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Abstract—The Multilevel Fast Multipole Method (MLFMM)
allows for a reduced computational complexity when solving
electromagnetic scattering problems. Combining this with the
reduced number of unknowns provided by Higher-Order dis-
cretizations has proven to be a difficult task, with the general
conclusion being that going above 2nd order is not worthwhile.
In this paper, we challenge this conclusion, providing results that
demonstrate the potential performance gains with Higher-Order
MLFMM and showing some modifications to the traditional
MLFMM that can benefit both Higher-Order and standard
discretizations.

Index Terms—Multilevel Fast Multipole Method, Computa-
tional Electromagnetics, Higher-Order Discretization, Electro-
magnetic Scattering

I. INTRODUCTION

Discretization of the surface current density occuring in
either the Electric Field Integral Equation (EFIE) or the
Combined Field Integral Equation (CFIE) can be done using
a wide variety of methods, most popularly the RWG [1] first-
order basis functions on a triangular mesh. When discretizing
the scattering problem using a Method of Moments (MoM)
approach, the resulting matrix equation has N unknowns and
thus requires O(N2) memory and computational time to solve
iteratively. Thus, a key issue in an efficient solution is the
reduction of N relative to the target accuracy of the obtained
surface current density. It has been demonstrated [2] that
Higher-Order (HO) basis functions significantly reduces N as
compared to a RWG discretization. Higher-Order discretiza-
tions achieve their efficiency by using smooth polynomials
with large domains to represent the surface current density.

Another line of research has focused on reducing the
complexity of the matrix vector product ¯̄ZĪ . One of the most
popular approaches is the Multilevel Fast Multipole Method
(MLFMM) [3], [4], which achieves O(N logN).

However, combining the advantages of those two ap-
proaches has proved elusive. While several groups have made
the attempt [5], [6], [7], each has independently arrived at the
conclusion that basis functions above 2nd order resulted in a
memory increase and thus were not efficient for MLFMM use.
We challenge that consensus with a carefully revised algorithm
that is tailored towards the larger group sizes occuring in HO
MLFMM, thereby allowing the reduced number of unknowns
to result in a reduction in memory and, nearly as important, a
significant reduction in computation time.

II. MULTILEVEL FAST MULTIPOLE METHOD

MLFMM achieves reduced complexity by grouping the
basis functions hierarchically, using the Octree algorithm [8],
and letting larger and larger groups interact over greater and
greater distances. The grouping is based on the center of the
geometric elements of the mesh, and the smallest allowed
groups have sidelengths not smaller than the largest geometric
element in the mesh.

This splitting allows performing the matrix-vector product
as

¯̄ZĪ = ¯̄ZnearĪ + F(Ī) (1)

where ¯̄Znear is the near-matrix, containing the interactions
between basis functions that are too closely spaced to apply
MLFMM — the elements in this matrix are computed as in the
normal MoM approach. F denotes the operation perfomed by
applying MLFMM.

The interaction between two well-seperated basis functions
fj ,fi, belonging to groups m and m′ respectively, can be
computed by

¯̄Zj,i = κ

"
Rjm(k, k̂) ·

(
TL(k, k̂, rmm′)Vim′(k, k̂)

)
d2k̂,

(2)
with rmm′ = rm − rm′ , where rm is the center of group
m, and for EFIE κ = −j kη4π , while for the Magnetic Field
Integral Equation (MFIE), κ = − η

4π , where η is the free-
space impedance. For EFIE, the basis function signature
Rjm(k, k̂p) = Vjm(k, k̂p)

∗ and

Vjm(k, k̂) =

ˆ
r2

fj(r) · [ ¯̄I − k̂k̂]e−jkk̂·(rm−r) d2r, (3)

and Rokhlins translation function TL [9] is computed as

TL(k, k̂,x) =

L∑
l=0

(−j)l(2l + 1)h
(2)
l (k|x|)Pl(k̂ · x̂), (4)

where k̂ is the unit wave vector, x is the vector between
two group centers directed towards the receiving group, x̂ =

x/|x|, h(2)
l is the spherical Hankel function of second kind

and order l, and Pl is the Legendre polynomial of order l.
Discretizing (2), we get

¯̄Zj,i = κ

K∑
p=1

wpRjm(k, k̂p) ·
(
TL(k, k̂p, rmm′)Vim′(k, k̂p)

)
.

(5)
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Format COO CSR New
Values [GB] 6.97 6.97 6.97

Row Indices [GB] 3.4 0.007 0.007
Col. Indices [GB] 3.4 3.4 0.2

Total [GB] 13.6 10.2 7.2

TABLE I
THE MEMORY USE FOR STORING THE SPARSE NEAR-FIELD MATRIX FOR A
SPECIFIC CONFIGURATION IN EACH OF THREE DIFFERENT FORMATS: COO

(COORDINATE LIST), CSR (COMPRESSED SPARSE ROW) AND THE NEW
FORMAT DISCUSSED HERE.

Here, wp are the integration weights.
The number of terms K in the sum (5) is related to the

number of terms L in the translation function (4) by the
relation K = 2(L + 1)2. Since L is determined from the
diameter D of the groups and the required relative accuracy
10−β as

L = kD + 1.8β2/3(kD)1/3, (6)

the obvious question is whether the decrease in the number
of unknowns can counteract the increase in L and thus in K
that comes from the increased basis function support and thus
increased D. For a standard MLFMM implementation with a
HO discretization, the increase in K (along with a larger ¯̄Znear)
is far more devastating than the benefits of reducing N , which
is essentially the conclusion reached by other research groups.
However, the results in this paper show that with a few careful
modifications to the standard algorithm, the benefits of Higher-
Order discretizations can be combined with MLFMM to result
in a low memory and computationally efficient algorithm.

III. IMPROVEMENTS

To achieve high performance for Higher-Order MLFMM,
some improvements are needed. First, to reduce the noticeable
memory burden for storing index integers for the sparse near-
matrix, we apply a new format which uses only two integers to
store an arbitrary number of consecutive column indices. With
a good ordering of the basis functions, this yields a significant
saving for a HO discretization, illustrated in Table I for a
specific example.

Second, the use of an adaptive grouping scheme allows for
much lower memory to be used for storing the basis function
patterns (3) by adding an additional level beneath the lowest
level in the Octree. With this, the center of the group rm is
changed to the center of an adaptive group rm̄ in (3), such
that (5) is changed to

¯̄Zj,i =κ

K∑
p=1

wpV
∗
jm̄(k, k̂p̄) ·

(
WT e−jkk̂·rm̄m

·TL(k, k̂p, rmm′)e−jkk̂·rm′m̄′WVim̄′(k, k̂p̄)
)
, (7)

where the overline refers to groups on the adaptive level.
Noticeably, (7) requires an interpolation using the matrix W ,
which means that the adaptive grouping requires additional
computational time. However, since this happens on the lowest
level, where the number of samples is very low, the cost is

D
2

rm′m̄′

Dm̄

2

Fig. 1. 2-D illustration of adaptive grouping. The dashed line is the projection
of a patch onto a plane, while the square is the box at the finest level of the
Octree. To the left is shown the scenario obtained with using the Octree
grouping at the lowest level as a foundation for the basis function patterns.
Further subpartitioning would disect the patch, which is suboptimal. Instead,
shown to the right, we introduce an adaptive grouping layer, which has its
center such as to minimize the size of the circle enclosing the patch. We
thus see that the region of validity, indicated by the bold black circle, is
much smaller than if it had to enclose the entire square. The rm′m̄′ vector
indicates the phase-center shift needed to start the upward pass.

low relative to the overall runtime. The concept of adaptive
grouping is illustrated in Figure 1.

Finally, the application of the Spherical Harmonics Expan-
sion (SHE), as introduced by Eibert [10], for storing the basis
function patterns on the adaptive level is a vital component in
any modern MLFMM implementation. The fundamental idea
is the representation of the basis function patterns as a set of
coefficients to the orthonormalized spherical harmonics, such
that
ˆ
r2

fj(r)·[ ¯̄I−k̂k̂]e−jkk̂·(rm̄−r) d2r =

W∑
p=0

p∑
q=−p

pjpqYpq(θ, φ),

(8)
The coefficients pjpq are thus stored instead of k-space samples
of (3). By representing the incoming patterns with another
SHE, with coefficients qipq , the integration step (5) can be
replaced with

¯̄Zj,i = κ

W∑
p=0

p∑
q=−p

(
pjpq
)∗ · qipq. (9)

To ensure a fast convergence of the SHE in (8), the basis
function patterns are expressed with cartesian rather than
spherical components. An on-the-fly conversion is then done
after aggregation at the adaptive level to allow the group pat-
terns to be expressed using only the two spherical components
(θ̂, φ̂).

IV. RESULTS

This section deals with two testcases, a PEC sphere and
a PEC corner scatterer. Throughout, we use GMRES and an
overlapping near-field preconditioner [11], but stress that the
results are independent of the solution method. We note that
whenever we discuss total memory, we refer to the memory
required to store the entire MLFMM structure but not to solve
the scattering problem. Thus, we disregard the storage required
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for solvers, preconditioners and geometry, since this is not of
focus in the present paper, but include everything required to
perform a matrix-vector product; from basis function patterns
and near-interaction matrix as well as minor temporary data
such as interpolation matrices and various bookkeeping.

The discretization employed is the Higher-Order Legendre
discretization [12]. The MLFMM implementation is described
in detail in [13], but the discussion in the present paper focuses
on practical considerations and includes a comparison with
other results from the litterature.

A. Sphere
The first testcase concerns the scattering from a 1 m radius

PEC sphere at 8 GHz, illuminated by an x̂-polarized plane
wave propagating along +z. The scattered electric field in the
E-plane is computed and compared to the Mie series solution.
The surface of the sphere is discretized using 4th order curved
quadrilaterals. We apply MLFMM with β = 3 to the CFIE.

As a measure of accuracy, we use the relative RMS, defined
as

Relative RMS =

√√√√∑Ns

i=1(|Ei,ref| − |Ei,cal|)2∑Ns

i=1 |Ei,ref|2
, (10)

where Ei,ref and Ei,cal denotes the reference and calculated
electric field at the ith sample point, respectively, and Ns is
the number of samples.

The memory usage is shown in Figure 2 as a function of the
RMS for each order. The problem requires between 235200
and 940800 unknowns for the 1st order (in the direction of
the current) basis functions and between 187500 and 367500
unknowns for the 5th order functions. We see that for higher
accuracies, 3rd–5th order are more efficient than 2nd order,
and the first-order solution is substantially worse than the HO
discretizations. However, we also clearly see that applying the
modications detailed in the previous section results in huge
savings, even for a first-order discretization.

Another interesting aspect, the computational time per
matrix-vector product, is shown in Figure 3, where we see the
strong incentive for using HO MLFMM. Aside from the fact
that the order and time per matvec are inversely proportional,
we also see that for higher orders, since the number of
levels are constant throughout the RMS interval, the time is
independent of the requested accuracy. Further, it is evident
that the modifications in the previous section only results in
moderate increases in the computational time, primarily due to
the adaptive grouping. From the figure, it is also evident that
the RMS is unchanged by the modifications, showing that there
is no loss of accuracy associated with the memory savings,
aside from the effects of applying an iterative solver.

Finally, while the sphere is an important reference case
due to the existence of an analytical solution, most practical
cases will have to use the EFIE. Figure 4 shows the results
corresponding to Figure 2 for the EFIE — note the different
scale on the y-axis. We see that for orders higher than 1, the
memory usage is essentially independent of the order, though
for very accurate results, 2nd order is somewhat less efficient.

With modifications n = 1 n = 2

Without n = 3 n = 4
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Fig. 2. The total memory for varying RMS and polynomial order n for
β = 3, using CFIE, with and without the modifications.
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Fig. 3. The time pr. iteration, normalized to 1 for the fastest run, for the
solutions shown in Figure 2. We see a direct connection between increasing
the order and reducing the time pr. iteration. We also see that the cost of adding
the modifications, as compared to the standard MLFMM implementation is
noticeable, representing roughly 20% increase.
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Fig. 4. The total memory for varying RMS and polynomial order for β = 3
for EFIE.

B. Corner reflector

As a second testcase, we consider an x̂-polarized plane
wave travelling in the positive z-direction, illuminating a PEC
corner reflector, as illustrated in Figure 5. This excellent
testcase was considered by Kolundzija et al. [7] and pro-
vides a good testcase for an MLFMM implementation due
to the strong interactions between well-seperated parts of the
scatterer. To compare our results with [7] we first consider
the corner scatterer with a side length of 20λ, yielding a
total surface area of 600λ2, a small testcase for MLFMM but
designed to allow validation against existing MoM code.

In [7], the error quantifier was the mean error, defined as

Mean error [dB] =
1

N

N∑
i=1

∆Gi (11)

where ∆Gi was defined effectively as

∆Gi =

{
0, Gi < Gmax −R
|Hi −Gi| Gi ≥ Gmax −R

(12)

where Hi and Gi are the ith points of the calculated and
reference bistatic radar cross sections in dB, respectively, while
Gmax is the peak value of Gi. The reference solution is
obtained by very finely discretized MoM. R is a threshold,
set to 40 dB in [7]. However, we see no need to introduce a
threshold and merely consider

Mean error [dB] =
1

N

N∑
i=1

|Hi −Gi| (13)

Fig. 5. The corner scatterer, looking into the aperture, along with an example
of the mesh used. In front of the scatterer, a coordinate system illustrates the
direction of incidence for the plane wave. The red, green and blue arrows
detones the x̂, ŷ and ẑ components, respectively.

Having extracted the relevant results from that paper, Figure 6
is a comparison between the memory required for various
orders in our implementation.

The figure shows the same overall conclusion as in the pre-
vious example — the modifications result in a very significant
reduction in memory, and regardless of the choice of order, the
memory required is roughly the same. In a direct comparison,
we see that our implementation yields an order of magnitude
better accuracy at roughly half the memory, except from order
2 from [7], where the accuracy is comparable but the memory
used by our implementation reduced roughly by a factor of 5.

Finally, we consider a 60λ sidelength scatterer, a somewhat
larger testcase. Here, since there is no straightforward way to
achieve a reference solution, [7] just documents the required
memory (5.6 GB) and number of unknowns (147987, up
to 4th order). We apply a fairly fine discretization, yielding
432537 unknowns up to 4th order, using 1.15 GB memory, a
factor of 5 reduction in memory. Although a direct accuracy
comparison is of course unavailable, using nearly 3 times as
many unknowns intuitively suggests that our accuracy is at
least as good as in [7].

V. CONCLUSION

In spite of previous work suggesting otherwise, MLFMM
with basis functions of orders higher than 2 can indeed be
very efficient, both in terms of memory and speed, pro-
vided that extra care is taken in the implementation. We
have demonstrated some additional techniques, both novel
and known, and showed how their succesful implementation
leads to a very efficient Higher-Order MLFMM. Finally, we
have compared our implementation to previously published
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Fig. 6. The memory used for a specific accuracy for the 20λ sidelength
corner scatterer, with results from [7] in blue and our implementation in red.

results, demonstrating a significant reduction in memory at
comparable and even improved accuracies.
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