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ABSTRACT

We present a new efficient design tool for rotationally
symmetric reflector antennas, possibly including 3D sup-
port structures and waveguide components. The tool is
based on a combination of four solvers: Mode-Matching
(MM) for cylindrical wave-guiding structures, a newly
developed higher-order BoR-MoM for rotationally sym-
metric structures, higher-order 3D MoM for arbitrary
waveguide components or reflector support structures,
and PO for extremely large reflectors. These four solvers
are combined using a rigorous domain decomposition ap-
proach based on scattering and admittance matrices, and
the concept of radiation ports is introduced to decouple
multiple scatterers located in free space. The admittance
matrices of the unchanged parts can then be reused dur-
ing the optimization phase, thus significantly reducing the
time to rebuild the full solution. An example reflector
design shows significantly improved performance com-
pared to previously published results.

Key words: Body of Revolution, Method of Moments,
higher-order basis functions, mode-matching, domain de-
composition, scattering matrix, maritime user terminals.

1. INTRODUCTION

Rotationally symmetric reflector systems are commonly
applied for compact high-gain antennas with low man-
ufacturing costs, low sidelobes, and low cross polariza-
tion. The typical application areas are maritime user ter-
minals, radar systems, and point-to-point links. These
compact systems often employ two reflectors in a clas-
sical axially displaced reflector configuration [1], or al-
ternatively, a single reflector with a backward radiating
hat feed [2, 3]. A common feature of these compact sys-
tems is a very tight integration of feed, subreflector, di-
electric support structure, and main reflector, which leads
to a resonant structure that cannot be analyzed with high-
frequency methods. Instead, a full-wave model is needed
to analyze the system with sufficient accuracy and conse-
quently, the full-wave model is also needed when numeri-
cally optimizing the antenna performance. Commercially

available software for general 3D problems lead to pro-
hibitively long run-times and do not allow numerical op-
timization. Instead, the rotational symmetry of the struc-
ture has been used to formulate the Body-of-Revolution
Method of Moments (BoR-MoM) [4] which is available
in a few commercial tools. The BoR-MoM equations are
typically discretized with triangular basis functions that
require 15 unknowns per wavelength to achieve conver-
gence. This leads to a typical run time of 30-60 seconds
per frequency point for a compact antenna. This speed is
not sufficient for a full optimization of the combined sys-
tem including the surface shape of the reflectors. In addi-
tion, many terminal antennas based on rotationally sym-
metric reflectors include small 3D features, e.g., waveg-
uide components with arbitrary cross section. The pres-
ence of 3D geometry prevents the use of BoR-MoM and
leaves a prohibitively slow 3D analysis as the only option.

This paper presents an efficient design tool for rotation-
ally symmetric reflector antennas, possibly including 3D
parts. The analysis core of the tool is based on a combi-
nation of four efficient solvers:

• The recently developed higher-order BoR-MoM is
used for rotationally symmetric reflectors, radomes,
dielectric support structures, and lenses. The higher-
order formulation is based on hierarchical basis
functions and smooth curvilinear patches, which im-
ply that even large structures can be handled with
very few unknowns. The typical runtime for a full-
wave analysis of a 40λ reflector system is 1-2 sec-
onds on a laptop.

• The Mode-Matching (MM) algorithm [5] has been
available for decades and provides excellent mod-
eling speed and accuracy for cylindrical horns and
wave-guiding structures. The implementation used
in this work is a generalized version of the commer-
cially available CHAMP software [6].

• The higher-order 3D MoM is used for waveguide
components with arbitrary cross section and for re-
flector support structures. The implementation used
here is derived from the GRASP software [7].

• Physical Optics (PO) is included for electrically
huge reflectors.



The four solvers listed above are combined using a rigor-
ous domain decomposition approach based on scattering
and admittance matrices. This approach is routinely ap-
plied for analysis of wave-guiding structures where the
scattering/admittance matrices of the individual compo-
nents are cascaded to form the total scattering/admittance
matrix. In this process, the internal waveguide ports are
eliminated. In this work, we extend the admittance ma-
trix formulation to the free space region containing mul-
tiple separate or connected scatterers, that are decoupled
using so-called radiation ports. Previous works have em-
ployed spherical waves as port expansion function, e.g.
[8, 9], but spherical radiation ports are not applicable
to closely spaced or connected scatterers. In this work,
BoR-MoM patches are used to represent the port geome-
try and BoR-MoM basis functions are used as port expan-
sion functions, which allows rotationally symmetric radi-
ation ports of general shape. The radiation port concept
serves as a flexible framework for combining the multi-
ple solvers and at the same time allows a scatterer, e.g.
a reflector or a 3D support structure, to be characterized
by an admittance matrix. The admittance matrices of the
unchanged parts can be reused during the optimization
phase, thus significantly reducing the time to rebuild the
full solution.

The paper is structured as follows: The higher-order
BoR-MoM and 3D MoM are outlined in Sections 2 and 3,
respectively. The domain decomposition approach is de-
scribed in Section 4 and the capabilities of the software
tool are listed in Section 5. In Section 6, an example
antenna design has been performed to illustrate that the
high analysis speed can lead to significant performance
improvements, even when compared to an already opti-
mized antenna.

2. HIGHER-ORDER BOR-MOM FOR FAST
FULL-WAVE ANALYSIS

The BoR-MoM has been formulated previously in sev-
eral works, e.g., for conducting objects [4], for dielec-
tric objects [10], and for composite metallic/dielectric
objects [11]. All these works have employed triangular
basis functions on flat curve segments which require a
relatively large number of unknowns to achieve conver-
gence. In this work, we employ the same continuos inte-
gral equation as in previous works, e.g., that of [11], but
the equation is discretized with higher-order basis func-
tions and curved segments of up to 4th order. The basis
functions applied here are those of [12] which have been
adapted to the present case with rotational symmetry. The
electric and magnetic surface currents on each curve seg-
ment are expanded as
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where X = J,M, at,emn, at,omn, aφ,emn, and aφ,omn are un-
known coefficients,N t is the polynomial expansion order
along the generatrix, Mφ is the azimuthal mode index,
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where at = ∂r/∂t, aφ = ∂r/∂φ, and Js(t, φ) =
|at × aφ|. In Eq. (2b), the polynomials Pn(t) along the
direction transverse to the current flow are chosen to be
Legendre polynomials due to their nice properties [12].
In the direction along the current flow in Eq. (2b), the
modified Legendre polynomials

P̃n(t) =

{
1− t, n = 0
1 + t, n = 1
Pn(t)− Pn−2(t), n ≥ 2

(3)

are used. The polynomials in (3) are zero at t = ±1 for
n > 1 which implies that the high-order terms do not
contribute to the current continuity. The two lowest or-
der polynomials can be matched with the corresponding
functions on the neighboring segments, or alternatively,
they can be left out at external nodes. The modal expan-
sion order, Mφ, should be adjusted to the specific prob-
lem and for a problem excited by the fundamental TE11

mode it is sufficient to include m = 1. The expansion
order along the generatrix, N t, is adapted to the electri-
cal length of each segment which is usually in the order
of 2λ. The BoR patches, obtained by rotation of a single
curved segment, are illustrated in Figure 1 for the case
of 1st, 2nd, and 3rd order segments. When higher-order
basis functions and curved segments are used, the num-
ber of unknowns is reduced by a factor of 4 and drops
to about 3-4 per wavelength, implying that the system
matrix is easily stored and inverted, even for structures
larger than several hundred wavelengths. The bottleneck
for smaller problems is usually the matrix fill time which,
however, can be dramatically reduced by using analytical
techniques [13].

3. HIGHER-ORDER 3D MOM

The new design tool includes a higher-order 3D MoM
solver, which is commercially available in the GRASP
software package for reflector antenna modeling and
scattering analysis [7]. In the new tool, the 3D MoM
solver has been successfully applied to arbitrarily shaped
waveguide components, where the higher-order formula-
tion has proven both accurate and stable. Dielectric ob-
jects and composite metallic/dielectric objects are han-
dled via the generalized PMCHWT [14] and the elec-
tric and magnetic surface currents on each patch are ex-
panded as
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r(t, φ) =

p∑
i=0
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Figure 1. Surfaces realized using a single BoR patch of first (left), second (centre), and third order (right), respectively.
The generatrix is represented by a Lagrange polynomial passing through the interpolation nodes (ρi, zi), where 1 ≤ i ≤
p + 1, and p is the order of the patch. The cubic patches using 4 interpolation nodes per patch generally provides the
highest accuracy for curved surfaces and is preferred for reflectors.
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Figure 2. Illustration of 3D surface patches, from left to right: Bilinear quadrilaterals defined by 4 interpolation nodes,
biquadratic quadrilateral defined by 9 interpolation nodes, bicubic quadrilaterals defined by 16 interpolation nodes, and
4th-order quadrilaterals defined by 25 interpolation nodes. The parametric expression for the surface patches contains
the interpolation nodes rij and li(p, u) is the ith Lagrange polynomial of order p in which uk is the parametric coordinate
of the interpolation node.

where X = J,M, aumn and avmn are unknown coeffi-
cients, Mu and Mv are the expansion orders along the
u- and v-directions, and Bu

mn and Bv
mn are u− and v-

directed vector basis function defined as

Bu
mn(u, v) =

au
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P̃m(u)Pn(v) , (5a)
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Herein, au = ∂r/∂u, av = ∂r/∂v, Js(u, v) = |au ×
av| is the surface Jacobian, and the polynomials P̃m are
defined in Eq. (3). The polynomial orders Mu and Mv

are adjusted to the electrical size of each patch, which is
usually up to 2λ×2λ. The curvilinear patches used here,
as well as the parametric representation of the patches,
are shown in Figure 2.

4. DOMAIN DECOMPOSITION ALGORITHM

Analysis and optimization of waveguide devices are rou-
tinely performed by computing scattering or admittance

matrices of each component separately and using a cas-
cading procedure to obtain the overall system response.
This rigorous approach has the following advantages:

1. The computational cost of solving multiple small
problems, and using cascading, is usually much
lower than the cost required for solving one large
problem.

2. Each component may be analyzed and optimized in-
dependently using the optimal analysis algorithm for
the component in question.

3. When optimizing a system composed of multiple
components, only the component being changed
needs to be re-analyzed. The time to assemble the
full solution is then a fraction of the time used for
the initial analysis of the system.

For waveguide devices, the different components can be
decoupled by introducing a number of waveguide ports
with an associated set of port expansion functions. The



port expansion functions are usually chosen as the eigen-
vectors of a waveguide with the same cross section as the
waveguide port. This choice leads to relative small scat-
tering or admittance matrices as well as high accuracy.

The scattering/admittance matrix method described
above may equally well be applied to a free-space region
with a number of isolated or connected scatterers. The
scatterers may then be separated by enclosing them in a
port surface and defining suitable port expansion func-
tions on that surface. The advantages listed in the previ-
ous paragraph are maintained by this approach. However,
only a limited number of works have attempted such a
solution, e.g., [8] for the case of coupling between a feed
and a reflector, or [9] for an antenna placement problem.
These works have employed spherical vector waves as
port expansion functions, which leads to a relatively com-
pact scattering or admittance matrix. However, the use of
spherical vector waves imply that only spherical port sur-
faces may be used. This is a severe limitation for closely
separated or connected scatterers.

In the present work, we use an admittance matrix descrip-
tion of a region of space, that may contain one or more
scatterers and one or more waveguide apertures. The re-
gion is enclosed by a number of port surfaces and these
ports are denoted radiation ports. The geometry of the
radiation port may be represented as a surface mesh and
standard MoM basis functions are used as port expansion
functions. The radiation ports enclosing the region, and
optionally the waveguide apertures or a conducting part
of a scatterer, must define a single closed surface that act
as a boundary of the region being characterized. Alterna-
tively, the region may be defined by the space outside a
closed surface and extending to infinity. The admittance
matrix of such a region is obtained by MoM as described
in Section 4.1 below. Furthermore, Section 4.2 lists the
port types and port expansion functions implemented in
the new software tool.

4.1. Extraction of Admittance Matrices

The admittance matrix of an arbitrarily shaped closed
waveguide region with N waveguide ports can be ob-
tained by MoM, e.g., by following the procedure detailed
in [15]. In the present work, we use the same approach for
extracting the admittance matrix of a region enclosed by
multiple waveguide and radiation ports. The region may
contain one or more composite metallic/dielectric scat-
terers. Consider the geometry shown in Figure 3.(a) that
shows a waveguide aperture illuminating two scatterers
(A and B). We wish to obtain an admittance matrix of the
region containing the waveguide aperture and scatterer A.
To this end, we introduce the radiation port shown with
a red line in Figure 3.(b) and the waveguide port shown
with a blue line. The region is now bounded by a closed
surface consisting of the red and the blue surfaces, as well
as a part of the exterior waveguide wall, which is consid-
ered to be a part of the scatterer. The space outside the
region containing scatterer A is denoted region I and the

space inside is denoted region II . In the following we
assume that an impressed field, e.g., an incoming guided
wave, may exist in region I . By using the surface equiv-
alence principle, we close the port boundaries, denoted
Sp = Srp+Swp, by a PEC surface and define equivalent
magnetic port currents on this surface as

Mp(r) = −n̂×E(r) (6)

where n̂ is a unit normal directed from region I into re-
gion II . These magnetic port currents maintain the total
electric field at the port surface. The continuity of the
magnetic field at the port interface requires

HI
tan(−M

p) +Hi
tan = HII

tan(M
p) , (7)

where HI(−Mp),HII(Mp) denote the magnetic field
radiated in regions I and II , respectively, and Hi is the
impressed magnetic field in region I . The magnetic port
current is now expanded as

Mp(r) = η0

Np∑
i=1

ViM
p
i , (8)

where η0 is the free space impedance and Np is the num-
ber of port expansion function. By choosing Np port
weighting functions Wp

j and forming inner product with
(7), we obtain the matrix equation

[Ip] =
[
Y I + Y II

]
[V ] (9)

in which [Ip] is related to the impressed field as

[Ip] =
[〈
Wp

j ;H
i
tan

〉]
, j = 1, ..., Np (10)

and
[
Y I,II

]
are the normalised admittance matrices

[
Y I,II

]
= η0

[〈
Wp

j ;H
I,II
tan (Mp

i )
〉]
. (11)

We now use the electric field integral equation (EFIE) to
obtain the admittance matrix

[
Y II

]
that fully character-

izes region II . The total electric field in region I is

E(r) = −∇×
∫
Sp

Mp(r′)GdS′

− jη0
k0
∇×∇×

∫
Sp+Ssc

J(r′)GdS′ (12)

where Sp is the port surface, Ssc is the surface of
the scatterers located inside region II , and G =
exp(−jkR)/(4πR), R = |r − r′|. In (12) it has been
assumed that the scattering object is PEC. If the scatterer
contains dielectric materials, an additional magnetic cur-
rent appears in (12) and the PMCHWT equations are used
instead. The general form, which allows dielectrics, has
been implemented in the tool but the additional terms are
left out for simplicity. By restricting the observation point
to the surface Sp + Ssc, and using Equation (6), we may
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Figure 3. Top: A waveguide aperture is illuminating two scattering objects. Bottom: Equivalent problem for extraction of
the admittance matrix of the region containing scattering object A. The waveguide aperture is closed by a waveguide port
defined on the blue surface Swp. The surface of scattering object A and the outer waveguide wall is denoted Ssc. The
region is bounded by a radiation port located in free space. The surface of this radiation port is denoted Srp and is shown
in red. The waveguide port and the radiation port is closed by a PEC surface. Electric MoM basis functions J are defined
on the surface Ssc + Swp + Srp, magnetic waveguide port basis functions Mwp are defined on Swp, magnetic radiation
port basis functions Mrp are defined on Srp, and magnetic MoM basis functions Msc are defined on the dielectric parts
of the scattering object.

now write the EFIE as[
−jη0
k0
∇×∇×

∫
Sp+Ssc

J(r′)GdS′
]

tan

= n̂×Mp(r) +

[
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Mp(r′)GdS′
]
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. (13)

The electric current J on Sp + Ssc is now expanded as

J(r) =

N∑
t=1

ItJt. (14)

The electric current (14) and the magnetic port current
(8) are now inserted in (13), and weighting functions Ts,
s = 1, ..., N , are chosen. By taking inner products of Ts

and (13) we obtain the matrix equation

[Z] [I] = [P ] [V ] (15)

where [Z] is the standard EFIE impedance matrix

[Z] =
−j
k0

〈
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∫
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JtG dS′

〉
(16)

and [P ] is the N ×Np matrix defined as

[P ] =
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Ts; n̂×Mp
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Mp
iG dS′
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(17)

Equation (15) allows the coefficients It in (14) to be de-
termined as

[I] = [Z]
−1

[P ] [V ] . (18)

At the port surface Sp, the magnetic field must satisfy
J = n̂×HII

tan(M
p), which also may be written as

−n̂× J = HII
tan(M

p). (19)

We now insert (14) and (8) in (19) and perform inner
products with the port weighting functions Wp

j , which
leads to the matrix equation

[Q] [I] =
[
Y II

]
[V ] (20)

where
[
Y II

]
is the desired admittance matrix defined in

(11) and [Q] is a Np ×N matrix given by

[Q] =
〈
Wp

j ;−n̂× Jt
〉
. (21)

By comparing (18) and (20), we have finally found the
admittance matrix of region II as[

Y II
]
= [Q] [Z]

−1
[P ] . (22)

4.2. Port Expansion Functions and Geometric Rep-
resentation

The rigorous domain decomposition approach employs
two port types: Waveguide ports and radiation ports. For



Table 1. List of port types and port geometry, associated port expansion functions, and supported analysis methods.
Supported Analysis Algorithm

Port type Port Geometry Port Expansion
Functions

Mode
Matching

BoR-MoM
(Section 2)

3D MoM
(Section 3) PO

Circular/coaxial
waveguide port

Circular disc /
planar ring

Circular/coaxial waveg-
uide eigenvectors

x x x

Rectangular
waveguide port

Planar rectangle Rectangular waveguide
eigenvectors

x

Radiation port Rotationally symmetric
surface defined as a
BoR mesh ( Figure 1)

BoR-MoM basis func-
tions (Equation (2) )

x x x

waveguide ports, the port expansion functions are cho-
sen as n̂ × emn where n̂ is a unit normal vector to the
port and emn are the orthonormal electric eigenvectors
of the waveguide. For radiation ports, we have chosen
to use the BoR patches in Figure 1 and the basis func-
tions in Eq. (2) to represent the port geometry and the
port expansion functions, respectively. This choice re-
sults in a very low number of port expansion functions
and consequently a compact admittance matrix. In addi-
tion, the admittance matrix of a circular symmetric region
is a block-diagonal matrix where each block corresponds
to a single azimuthal m-index that may be computed and
stored separately. An overview of the port types and port
expansion functions currently used in the software tool is
shown in Table 1.

5. DESIGN TOOL BASED ON FOUR RIGOR-
OUSLY COUPLED SOLVERS

The four efficient solvers and the rigorous domain de-
composition algorithm described above have been inte-
grated in a flexible design software that combines all the
required capabilities in a single tool. The tool provides
a fast full-wave analysis of rotationally symmetric reflec-
tors systems, even when the geometry contains minor 3D
parts. As an example of the analysis speed, the compu-
tation times for various ring-focus antennas are listed in
Figure 4. It can be observed that a full-wave analysis of a
50λ rotationally symmetric ring-focus antenna is accom-
plished in slightly more than one second when running
on a laptop computer. These results have been obtained
using the BoR-MoM solver and a circular waveguide port
for extraction of the scattering parameters.

In addition to the core analysis methods, the software
contains a rich set of parametric models for definition
of the geometry. The geometry can be defined in sev-
eral ways with increasing level of details, ranging from
a high-level model with few parameters to a fine-grained
model with a large number of optimization variables. Re-
flector surfaces and horn profiles are conveniently de-
fined as splines with user-specified and optimizable con-
trol points. The tool includes four optimization algo-
rithms, both global optimization and gradient-based al-
gorithms, as well as several built-in optimization goals,

Main reflector diameter Computation time
15λ 0.2 s
25λ 0.3 s
40λ 0.7 s
50λ 1.2 s
75λ 3.0 s
100λ 5.7 s

Figure 4. Higher-order BoR-MoM computation times
for a simple ring-focus dual-reflector reflector antenna,
(laptop computer, 2011 model). The antenna geometry
comprises a main reflector, a sub reflector, and the ex-
terior wall of the feed horn. The feed horn is a sim-
ple open-ended waveguide and the reported computation
time includes extraction of waveguide scattering param-
eters. The computation time per frequency are listed for
antennas of different sizes.

e.g., return loss, directivity, side-lobe level, cross-polar
radiation, and radiation pattern templates. The latter op-
timization goal is a convenient facility for meeting regu-
latory requirements on the radiation pattern.

6. EXAMPLE DESIGN OF A COMPACT AN-
TENNA WITH LOW SIDE-LOBES

The design tool is now tested with a practical antenna
synthesis problem that has been published previously
[16]. The antenna is a very small hat-feed reflector an-
tenna with a main reflector diameter of 24 inches at 5.8
GHz, corresponding to 11.8λ. The requirements for this
antenna are listed in Table 2. The feeding waveguide
needs to be above cut-off and the small main reflector and
the low sidelobe requirement limits the allowable size of
the feed hat. These constraints make it a very challenging
task to obtain a reasonable return loss and the solution
of [16] therefore employed a small dielectrically filled



waveguide. In addition, the solid dielectric was extended
to completely fill the space between the feed and the feed
hat. This implies that a relatively large piece of dielec-
tric material is needed, resulting in dielectric losses and a
relatively high mass. With this configuration the pattern
requirements were met but the return loss was 12 dB [16]
when the main reflector was included.

The new design tool has been used to design an alterna-
tive antenna of the same size but without dielectric filling
in the waveguide. Instead, the feed hat is supported by a
thin dielectric cone with a relative permittivity of 2.5. The
feed hat is designed with a stepped profile and the main
reflector is highly shaped to force the sidelobes down.
The antenna was optimized using a total of 32 optimiza-
tion variables and the geometry of the optimized design
and the radiation pattern are shown in Figure 5. Table 3
lists the performance parameters of the designed example
as well as the original design proposed in [16]. The exam-
ple design presented here differs significantly from that of
[16] by providing a higher directivity, lower sidelobes, a
much higher return loss, and lower cross-polar radiation,
while avoiding the need for a dielectrically filled waveg-
uide. The major improvements observed in Table 3 have
been accomplished by allowing a highly shaped main re-
flector and a stepped sub reflector, which results in a high
number of optimization variables. Nevertheless, the fast
analysis provided by the new tool made this design task
a relatively easy job. This design was performed without
using radiation ports, i.e., primarily using the BoR-MoM
solver.

Table 2. Design Requirements for a compact reflector
system, from [16]

Frequency Range 5.725 - 5.875 GHz
Aperture diameter 24 in (0.61 m ≈ 11.8λ)
Maximum VSWR 1.5:1 (ret. loss 14 dB)
Polarization V or H
Antenna gain 27.5 dBi
Sidelobe level relative to peak -20 dB
Maximum cross-polarization
level relative to co-polar peak

-25 dB

7. CONCLUSIONS

We have presented the development of new design tool
for rotationally symmetric reflector systems, possibly in-
cluding 3D waveguide components and support struc-
tures. The tool is based on four efficient solvers: Mode
Matching for circular horns, higher-order BoR-MoM for
reflectors and dielectric support structures, higher-order
3D MoM for 3D waveguide components and support
structures, and PO for electrically huge reflectors. The
four solvers are combined using a rigorous domain de-
composition approach based on scattering and admittance
matrices. The admittance matrix method is extended to
the region outside the horn by introducing radiation ports

Table 3. Realized performance parameters of compact
reflector systems

Design
from [16]

This paper

Directivity 28.4 dBi 29.4 dBi
Return loss > 12 dB >20 dB
Sidelobe level relative to peak -25.9 dB -26.0 dB
Maximum cross-polarization
level relative to co-polar peak

-20.5 dB -28.0 dB

that decouple various regions of space. This allows a
support structure or a reflector to be characterized by
an admittance matrix that can be reused during the op-
timization phase, which potentially leads to a dramatic
reduction of the time needed to repeatedly obtain the full-
wave solution. However, this capability has not yet been
backed by numerical results.

Numerical results obtained with the BoR-MoM solver
have demonstrated that a full-wave analysis of a 50λ ring-
focus antenna can be accomplished in slightly more than
one second on a laptop computer. The design tool was
finally tested on a previously published antenna synthe-
sis problem. The compact antenna design shown here
provides higher directivity (+1dB), higher return loss
(+8dB), and lower cross-polar radiation (-7.5 dB), while
avoiding the need for a dielectrically filled waveguide.
This example illustrates that a fast and flexible design tool
eventually leads to better antenna performance.
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