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Abstract—Accurate fitting of the noisy irregu-
lar amplitude only main beam data is essential
for the retrieval of the Planck space telescope
geometry [1]. Therefore, a novel two-step fit-
ting algorithm which focuses on the spatial
dependency of the in-flight measurements has
been implemented. To reduce both the noise
and the size of the dataset a spatial filter is
applied, without reducing the amount of pat-
tern information. Thereafter, a Kriging [2], [3]
fitting is performed, providing a smooth model
with a significant noise level reduction. As a
result, this algorithm provides a much more
accurate and smoother result, reasonable error
estimates and runtimes several orders of mag-
nitudes faster than the previous algorithms.

Index Terms—Fitting, Planck, Geometry Re-
trieval, Kriging, Beam Data.

I. Introduction

The in-flight measurements from the Planck satel-
lite are impacted by severe noise, particularly for
the Low-Frequency Instruments (LFI). Further-
more, they are obtained in an irregular pattern
as a consequence of the rotation performed by
the satellite and signals measured several times
in nearly the same directions.

An example of a dataset1 covering the main beam
from the 30 GHz LFI detector is shown in Figure
1, illustrating the distribution of the 41677 sam-
ples in ”lines” along the scan direction.

1Note that all data used in this paper are simulated.

Fig. 1. An example of a dataset from main beam of the
Planck detectors. Note the distribution in lines along the
scan direction.

To reduce the noise, and achieve a model in a
regular grid, a two-stage fitting algorithm has
been developed, exploiting the spatial dependency
of the measurements. The first stage consists of a
rather crude filter, the purpose of which is both
to reduce the noise and the size of the dataset.
The second stage is the Kriging fitting model,
fitting the result of the filter to provide a smooth
model. This stage is inspired by the implementa-
tion in the Matlab Kriging toolbox DACE [3],
[4], modified to employ fitting and implemented
in FORTRAN with a focus on memory-efficiency
and stability.
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II. Algorithm

Mathematically, we are given m̄ measurements of
(u, v, z), with the (u, v) coordinates of each mea-
surement are called the sites, and z are called the
responses. As mentioned previously, the samples
are noisy and irregularly distributed, but have
a spatial dependency, such that the closer two
measurements are in the (u, v) plane, the greater
the correlation between their responses.

With the datasets we are considering, m̄ is far
too large to employ the Kriging algorithm directly
- as will be demonstrated in Section II-B1, the
chief computational cost of computing the Kriging
model is the Cholesky factorization of a matrix of
sizem×m, wherem is the number of sites. For the
30 GHz dataset, m̄ = 41677, and thus some data
reduction is needed. Furthermore, experiments
have shown that Kriging fitting perform poorly
on datasets affected by serious noise, particularly
for low-dimensional data [5, Chapter 4].

A. Filter

Therefore, a crude spatial filter is employed. The
filter seperates the (u, v) space into a grid, and
uses the mean of all measurements in each grid-
block - an illustration is shown in Figure 2, and
further discussion in [6], [7]. Thus, assuming that
the noise has mean and skewness zero, taking the
mean of the responses z in each grid-block should
allow us to filter out most of the noise. Of course,
we need a sufficient number of measurements
in each block, thus encouraging us to make the
blocks as large as possible - on the other hand,
since we only get one resulting measurement per
block to input to our Kriging model, too large
blocks will result in too few measurements and
consequently a result that does not take into
account the local variations (such as the shoulders
of the main beam).

To investigate this, we considered the spacing
between the regular grid as a multiplier κ times
the Nyquist ratio λ/D, λ being the wavelength
andD being the aperture of the antenna. Previous
experience with representing fields by interpola-
tion suggested using κ ≈ 0.25, but as discussed in
detail in [7], the noisy data in the problem resulted

in 0.05 ≤ κ ≤ 0.1 yielding far better solutions,
depending on the dataset in question2.

Fig. 2. A mini-example of the filter. The blue lines
represent the grid, separated by κ λ

D
. The red crosses are

the measurements, and the green points are the result of
the filter - representing the mean of the samples inside each
box.

B. Kriging

The method of Kriging exploits a supposed spatial
dependency in a sample to impose additional
requirements on the fit. In its simplest form, it
basically only involves the fitting of a correlation
model to a sample set - it was in this form
the Danie Krige [2] introduced it. Later work
by several people, most notably G. Matheron
[8], formalized it further and introduced several
variations of the model, including the Universal
Kriging model used here.

Its use in modelling deterministic behaviour was
introduced by the landmark paper [9], allowing
widespread use of the method which was previ-
ously restricted to the geostatistical community.
Theoretically, the key strength of the Kriging
predictor is that amongst all linear and unbiased
estimators, it minimizes the expected error3. In
practice, it has several other advantages which has
prompted its use in the present scenario - most
notably, it yields a smooth model and requires no
special considerations when faced with irregular
data. Also, its use of a global regression model and

2Specifically, this depends on the detector in question -
the lower the frequency, the more noisy the dataset.

3Technically, it is a BLUP: Best Linear Unbiased Predic-
tor, where ”Best” refers to it minimizing the mean squared
error [10, p. 60].
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a local correlation model allows for surprisingly
good accuracy when used correctly.

1) Model: Given a set of m design sites X =
[x1,x2, . . . ,xm]T ,xi ∈ R2,xi = (ui, vi) and re-
sponses z = [z1, z2, . . . , zm]T , we begin by nor-
malizing the data by subtracting the mean and
dividing by the standard deviation, for each col-
umn of X and for z. In this manner, each column
of X and z have a mean of zero and a standard
deviation of one [3, eqn. (2.1)]. This process yields
better numerical and statistical properties [10, p.
139].

Inspired by [9], a model is adopted that expresses
the deterministic response z(x) as the realization
of a regression model F and a stochastic model
S, such that our model of the responses z is

z(x) = F(x,β) + S(x,θ) (II.1)

In the present scenario, the regression model is
restricted to a linear4 combination of n basis
functions fj , specifically low-order polynomials.
β ∈ Rn are the regression parameters, acting as
weights for the basis functions. n depends on the
order of the polynomials chosen - in our exper-
iments, we found that the use of second order
polynomials5 provided the best result, yielding
n = 6. The stochastic model is a Gaussian cor-
relation model (II.4), and θ ∈ R2 act as scaling
parameters, modifiying the amount of correlation
relative to the distance between two sites. This
allows us to express (II.1) as

z = Fβ + Φ(θ, γ)α (II.2)

where F is the regression matrix, i.e. the ba-
sis functions evaluated at the given sites Fij =
fj(xi), i = [1, 2, . . . ,m], j = [1, 2, . . . , n], And the
correlation matrix Φ is

Φij = Z(θ,xi,xj), i, j = 1, 2, . . . ,m (II.3)

As mentioned, we use a Gaussian correlation
model r(θk, xi,k, xj,k), such that

r(θ,xi,xk) =
2∏
k=1

e−θk(xi,k−xj,k)2
(II.4)

meaning that Φij = r(θ,xi,xk). Here, the no-
tation xi,k means the k’th coordinate of the i’th

4In theory, there is no need to restrict the regression
model to being linear - however, a non-linear model would
require a substantial amount of work to implement, and
would increase the computation time significantly.

5Implemented as the regpoly2 regression model in
DACE, [3, Section 5.3].

site. To achieve a fitting model, we add a constant
γ > 0 to the diagonal of Φ, yielding a final model

z = Fβ + (Φ(θ) + γI)α (II.5)

Note that the i’th diagonal element of Φ is the
autocorrelation of the i’th site - for interpolating
Kriging, this would be 1, but when fitting, we set
the autocorrelation to 1+γ, giving the model more
freedom to follow a more likely path.

Computing the parameters, namely β,θ,α and γ,
is by far the most tricky aspect of the implemen-
tation, as great care needs to be taken to ensure
numerically stable and computationally efficient
results. This is detailed in several papers, amongst
them [3], [4], [6] and in the book [11], and will
therefore be skipped here. Thus, the key thing to
note is how the model (II.5) consists of a global
regression part and a local correlation part.

2) Predictor: Having computed the model, we
can predict the value ẑ(x̂) at an untried location
x̂ as [3, (2.16)]

ẑ(x̂) = f(x̂)Tβ + r(θ, x̂, X)Tα (II.6)

where r(θ, x̂, X) ∈ Rm is the value of the corre-
lation function (II.4) evaluated between each of
the m given sites and the untried x̂. This yields a
prediction in the normalized space - to scale back
to the original space, i.e. before the transforma-
tion mentioned at the beginning of Section II-B1,
simply multiply by the standard deviation of the
measured response vector z.

III. Results

The 30 GHz beam is simulated with a noise level
of 14 dB below peak, which is generated by the
sampled planet and the temperature of the detec-
tor [1]. The main beam pattern is calculated by
Physical Optics [12] in all the 41677 measurement
directions and the resulting simulated pattern is
shown in the 3D view in Figure 3.
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Fig. 3. Simulated main beam with noise for 30 GHz
detector LFI27S.

Applying the algorithm with κ = 0.1, and Kriging
parameters as computed by the algorithm (note
that θ and γ are computed automatically by
a Maximum Likelihood Estimate [4, Section 6])
yields the result shown in Figure 4.

Fig. 4. Kriging fitted and noise filtered main beam for 30
GHz detector LFI27S.

The fitted simulated main beam is compared with
the noise-less simulated beam in Figure 5. The
main shapes of the contour curves down to the
introduced noise level of 14 dB are very well
regenerated. Below -25 dB the noise is dominant
and all pattern information is lost in this region.

Fig. 5. Kriging fitted and noise filtered main beam, shown
in dashed red curves, compared with noiseless pattern for
30 GHz detector, LFI27S, shown in solid blue curves.

The Kriging fitted beams are used directly in the
retrieval of the geometrical information on the
Planck telescope. Due to the very exact fitting and
noise reduction a larger dynamic range of the mea-
sured beams can be utilized in the retrieval giving
much more information on the telescope mirror
alignment and surface deformations. Furthermore,
a Kriging generated regular grid makes it much
simpler to calculate the main beam characteris-
tics, such as beam peak, half power ellipticity and
efficiency.

IV. Conclusion

The algorithm developed for this project makes
use of a crude filter and a fitting Kriging model
(II.5), exploiting the spatial dependency of the
data. The results are quite impressive - the severe
noise level is significantly reduced, allowing a
larger range of the measured beams to be utilized
in the geometry retrieval. Furthermore, although
not discussed here, the runtimes are very reason-
able and on the order of seconds, allowing a more
interactive approach to the modelling process. In
conclusion, the algorithm presented here improves
upon previous algorithms and will be vital in the
in-flight geometry retrival of the Planck space
telescope.
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