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Abstract—This paper presents a new hierarchical basis of arbi-
trary order for integral equations solved with the method of mo-
ments (MoM). The basis is derived from orthogonal Legendre poly-
nomials which are modified to impose continuity of vector quanti-
ties between neighboring elements while maintaining most of their
desirable features. Expressions are presented for wire, surface, and
volume elements but emphasis is given to the surface elements. In
this case, the new hierarchical basis leads to a near-orthogonal
expansion of the unknown surface current and implicitly an or-
thogonal expansion of the surface charge. In addition, all higher
order terms in the expansion have two vanishing moments. In con-
trast to existing formulations, these properties allow the use of very
high-order basis functions without introducing ill-conditioning of
the resulting MoM matrix. Numerical results confirm that the con-
dition number of the MoM matrix obtained with this new basis is
much lower than existing higher order interpolatory and hierar-
chical basis functions. As a consequence of the excellent condition
numbers, we demonstrate that even very high-order MoM systems,
e.g., tenth order, can be solved efficiently with an iterative solver in
relatively few iterations.

Index Terms—Basis functions, hierarchical systems, high-order
methods, integral equations, method of moments (MoM), orthog-
onal functions, polynomial approximation.

I. INTRODUCTION

E LECTROMAGNETIC integral equations are often dis-
cretized with the method of moments (MoM) [1] which

is one of the most widespread and generally accepted tech-
niques for electromagnetic problems. The MoM requires less
unknowns than techniques based on differential equations but
at the same time necessitates the solution of a matrix system
with a dense and often ill-conditioned matrix [2]. With being
the number of basis functions, the solution time of the matrix
system is proportional to if a direct solver is applied,
with iterative solvers, or with accelerated iterative
methods [3]. Thus, any efficient MoM technique must apply
an iterative method. This requires a set of basis functions
that does not lead to an ill-conditioned matrix. An increased
accuracy of the solution and/or a reduced number of unknowns
can be obtained by employing higher order basis functions.
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Divergence-conforming basis functions that impose normal
continuity of a vector quantity between neighboring elements,
such as the electric surface current density, are usually applied
in MoM [4]–[11] whereas curl-conforming functions that
impose tangential continuity are applied in the finite element
method (FEM) [8], [12]–[15]. The higher order functions can
be categorized as interpolatory or hierarchical. The interpola-
tory ones, e.g., [8], interpolate the value of a field quantity at
a number of interpolation points such that only one function
is nonzero at the interpolation points. This allows a direct
physical interpretation of the unknown coefficients but also
limits the applicability of the basis since the expansion order
must be kept constant throughout the mesh, thus requiring
a mesh with equally sized elements. Hierarchical functions,
e.g., [5], allow for much greater flexibility. The basis of order

is a subset of the basis of order which enables
different expansion orders on different elements in the same
mesh. Thus, a hierarchical basis includes the low-order basis,
e.g., Rao–Wilton–Glisson (RWG) [16] or rooftop, as the lowest
order member of the basis. As a consequence, hierarchical
bases combine the advantages of both low-order and higher
order bases into a single flexible basis.

The divergence-conforming higher order basis functions [5],
[8] suffer from the undesirable side-effect of an ill-conditioned
system matrix. Ill-conditioning is often worse with hierarchical
functions than with interpolatory ones which has motivated
many authors to use the latter, thus sacrificing the flexibility
of the hierarchical functions. However, the results presented
in [17] suggest that ill-conditioning can be avoided by making
the basis functions near-orthogonal. Complete orthogonality
is apparently not possible when the hierarchical expansion
is required to satisfy continuity of the normal component
across element boundaries. Orthogonality was not addressed
previously in the context of higher order bases for MoM
[4]–[10], except for [11] that investigated various orthogonal
polynomials. However, the modification that was applied to
enforce continuity essentially destroyed the orthogonality of
the expansion. In the FEM context, Webb [15] used partial
Gramm–Schmidt orthogonalization to derive a set of hierar-
chical functions. However, this approach will lead to a worse
result than the one presented here as will be explained in
Section II-B.

In this paper, we develop a set of higher order hierarchical
basis functions that provides a lower condition number than
that of existing interpolatory functions and hierarchical func-
tions. In fact, the condition number remains almost constant
for increasing polynomial order. This is achieved in three steps
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that differ from previous works. First, orthogonal Legendre
polynomials are applied and second, a new procedure to modify
the polynomials is used [18]. This allows for enforcing the
continuity without destroying the orthogonality. Third, a further
improvement of the matrix condition number is obtained by
defining appropriate scaling factors that multiply each basis
function. These scaling factors have a significant impact on
the condition number but were not considered in previous
works on hierarchical basis functions in the MoM context
[4]–[6], [9]–[11]. Further, the modified Legendre polynomials
implicitly yield an orthogonal expansion of the charge. To the
knowledge of the authors, this feature has not been introduced
in any of the works on higher order basis functions [4]–[15].
As a result of the low condition number, MoM matrix systems
with even tenth-order Legendre basis functions can be solved
iteratively.

Higher order basis functions enable large elements which
calls for higher order curvilinear geometry modeling. Several
authors have treated higher order curvilinear surface modeling
for both low-order [19]–[21] and higher order [8], [22] basis
functions. The functions presented here can be applied on
curvilinear patches of arbitrary order and numerical results will
be presented for curved second-order nine-node quadrilaterals.
Quadrilaterals are preferred over triangular patches since they
generally result in the lowest number of unknown. However, it
simplifies the meshing task if a few triangles are allowed in a
quadrilateral mesh. This is accomplished by simply treating tri-
angles as degenerate quadrilaterals with two vertices collapsed
into one.

This paper is organized as follows. Section II-A describes
orthogonality properties of MoM basis functions. Section II-B
presents the derivation of the basis functions for quadrilaterals
with the properties of these functions discussed in Section II-C.
Section II-D deals with the efficient calculation of the MoM ma-
trix elements, whereas Sections II-E and II-F are devoted to gen-
eralizations for other elements shapes, i.e., triangular patches,
wires, and hexahedral volumes. Section III presents validations
and numerical results and Section IV includes some concluding
remarks.

II. NEW HIERARCHICAL LEGENDRE BASIS FUNCTIONS

A. Orthogonality of Basis Functions in the MoM

The MoM is a general method for solving equations of the
type , where is an integro-differential operator,

is a known vector function, and is an unknown vector
function. The superscript is used here to indicate that these
functions are continuous. Discretizing the equation via the MoM
yields the matrix equation in which

(1a)

(1b)

where and refer to the th testing and th basis functions,
respectively. The inner product is defined as

(2)

where the denotes complex conjugation. For later use, we also
define the matrix as the inner products of the testing and
basis functions

(3)

The matrix must be well-conditioned to successfully solve
for using iterative methods. As is well-known, the matrix
condition numbers depends on the eigenvalues of which
in turn are associated with the choice of testing and basis
functions. However, it was shown in [17] that the eigenvalues
of approximate a subset of the continuous operator

, provided that the basis functions can accurately represent
the eigenfunctions of the continuous operator. Thus, the eigen-
values of are independent of the choice of testing
and basis functions. Based on this, it was argued in [17] that
the moment matrix is well-conditioned if we choose basis
and testing functions that yields a well-conditioned . This
is accomplished with first-order subsectional basis and testing
functions, such as RWGs or rooftops, since will be close to
a diagonal matrix due to the disjoint supports of the basis and
testing functions. However, for higher order basis functions the
number of functions with common or overlapping supports can
be very large, e.g., larger than 100, implying a larger bandwidth
for the matrix . This larger bandwidth is likely to produce
a poorly conditioned , and thus a poorly conditioned MoM
matrix . This argumentation explains why higher order basis
functions may produce ill-conditioned MoM matrices. Never-
theless, there are ways to avoid ill-conditioned matrices.
Specifically, if the functions with common or overlapping
supports satisfy the orthogonality relation

(4)

the matrix will be well-conditioned due to its narrow band-
width. To take advantage of the benefits brought by the higher
order basis functions, it is therefore important to develop basis
functions that are orthogonal in the sense defined by (4). In the
following section we derive a near-orthogonal set of basis func-
tions, so that has few nonzero elements outside the diagonal.

B. Construction of the Basis for Quadrilaterals

We consider a curved quadrilateral patch of arbitrary order
with an associated parametric curvilinear coordinate system de-
fined by (see Appendix I). The surface current
on each patch is expanded as

(5)

where and are the co-variant unitary vectors
and . Without loss of generality we consider only

-directed currents with the understanding that -directed cur-
rents can be obtained by interchanging and . Let us introduce
the higher order expansion

(6)

where is the surface Jacobian, are un-
known coefficients, and and are expansion poly-
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nomials. As will be shown later, the vector in (5) and the
factor in (6) are required by the curvilinear geometry
modeling when normal continuity between elements is desired.
However, they make it difficult to derive an orthogonal basis set
for all possible patch shapes. Therefore, the following discus-
sion about orthogonality is strictly related to the expansion poly-
nomials and . Thus, the orthogonality of the basis
functions is only maintained when has no and

dependence, i.e., on rectangular or rhomboid-shaped patches.
Nevertheless, the numerical results in Section III confirm that
favorable condition numbers can also be obtained for more gen-
eral patch shapes.

The choice of polynomials in (6) is important for the resulting
matrix condition number. In [5], the power expansion

was chosen. In this work we choose and to be
the Legendre polynomials

(7)

that satisfy the orthogonality relation

(8)

where is the Kronecker delta function.
The expansion in (6) is not appropriate if normal continuity

of the current flowing across patch boundaries is to be enforced.
Instead, the polynomials along the direction of current flow, i.e.,
the -direction, must be modified such that only a single low-
order polynomial is nonzero at the edge , a single low-
order polynomial is nonzero at the edge , and the higher
order polynomials are zero at both edges. This modification can
be done in several different ways. To illustrate the properties of
the modified polynomials discussed below we define a matrix

with the elements

(9)

where are the modified polynomials to be defined.
This matrix should preferably be a diagonal matrix, indicating
that the modified polynomials are orthogonal. However, com-
plete orthogonality is not possible if the lowest order expansion
( ) is required to be the rooftop functions . One pos-
sible modification was applied to a power expansion in [5] and
later used with several different types of polynomials in [11].
Applying the same modification to the Legendre polynomials
yields the modified polynomials

(10)

Unfortunately, the modified polynomials obtained
from this procedure are far from orthogonal, due to the sub-
tracted terms for in (10). In fact, all higher order
functions have nonzero inner products with the two lowest
order functions, and all even (odd) higher order functions have

Fig. 1. Normalized inner product matrices [�S ] for the modified polynomials
(linear scale), (a) the modified polynomials P (u) in (10), (b) the modified
polynomials P (u) in (10) after Gramm-Schmidt orthogonalization, and (c)
the modified polynomials P (u) in (11).

nonzero inner products with all other even (odd) higher order
functions. This is illustrated in Fig. 1(a) that shows the matrix

for the polynomials for . As seen,
the coupling between odd and even polynomials results in a
large number of nonzero elements, indicating that the orthogo-
nality of the Legendre polynomials have been destroyed by the
modification.

The lack of orthogonality can be avoided by using partial
Gramm–Schmidt orthogonalization, as in [15], to orthogonalize
all higher order functions. Nevertheless, this approach cannot be
used to orthogonalize the higher order functions with respect to
the two lowest order functions , since this would destroy the
necessary property , . This is illustrated
in Fig. 1(b) that shows the matrix obtained by applying
Gramm-Schmidt orthogonalization to the modified polynomials
in (10). The nonzero elements in the first two rows and columns
indicate the nonzero inner products of the higher order polyno-
mials with the two lowest-order polynomials, .

Instead of the modifications described above, we propose the
alternative modified higher order polynomials

(11)

that have the desired property , . The idea of
subtracting two Legendre polynomials was also applied in [23]
to formulate scalar entire-domain basis functions for differen-
tial equations. However, the vectorial subsectional basis func-
tions derived here differ significantly from those of [23]. For

the modified polynomials in (11) are orthogonal to the
two lowest order functions, . However, all higher order
polynomials have nonzero inner products with the polynomials
two orders lower and two orders higher. This is illustrated in
Fig. 1(c) that shows the matrix for the modified polyno-
mials in (11). By comparing the three matrices in Fig. 1, we ob-
serve that this latter modification provides the lowest number of
nonzero terms and a diagonally strong . Thus, the orthogo-
nality of the Legendre polynomials is best preserved by applying
the modification in (11). We also remark that the modified poly-
nomials obtained by the Gramm-Schmidt orthogonalization do
not posses the desirable features derived from (18)–(23) in Sec-
tions II-C and II-D.

The next step is to determine appropriate scaling factors for
the basis functions that minimize the condition number. Numer-
ical experiments showed that a good choice is to scale such that
the Euclidean norm of each basis function is unity on a square
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patch of unit side length. The experiments verified that other op-
tions, e.g., scaling each function to a maximum value of 1, did
not perform equally well. By defining the scaling factors

(12a)

(12b)

and inserting the modified polynomials in the initial ex-
pansion (6), the obtained final expansion is

(13)

where are the new unknown coefficients. An alternative
representation that separates the functions which take part in
maintaining the normal continuity and the functions which are
zero at is

(14)

In the next section, we examine the properties of the above ex-
pansion.

C. Properties of the Expansion

In (14), the polynomials with a -dependence were modified
to incorporate normal continuity across patch edges. To be spe-
cific, the functions in the first line of (14) have a linear variation
in the -direction and are nonzero at or . These
functions serve to ensure the normal continuity across the -di-
rected edges and must be matched with similar functions on the
neighboring patch. For this reason, these functions are some-
times referred to as edge functions or doublets. The normal com-
ponent of the basis functions will be continuous, provided that

is the same on both sides of any common edge of two
neighboring patches. Using the results (36b) and (38) from Ap-
pendix II, the normal component of across a -directed
edge is

(15)

where is the contravariant unitary vector. The quantity
remains the same on both sides of the edge since the vectors

on two neighboring patches are tangential to the same edge.
Thus, normal continuity is maintained when the surface Jaco-
bian is included in the expansion.

The functions in the second line of (14) are zero at
and do not contribute to the normal continuity of the current.
They are defined on a single patch and have an th order poly-
nomial variation in the -direction, where . These func-
tions are often referred to as patch functions or singletons.

The -directed basis functions in (13) allow an independent
selection of the expansion orders along the direction of current

flow ( ) and along the transverse direction ( ). Similarly,
the -directed basis functions not shown in (13) are character-
ized by the expansion orders along the direction of current flow
( ) and along the transverse direction ( ). A set of basis
functions that is compatible with the Nedelec constraint [12] is
obtained by choosing . Such
functions are said to be of mixed-order since the order of the ex-
pansion along the direction of current flow is one order higher
than along the transverse direction. The Nedelec constraint en-
sures a consistent charge expansion that is polynomial complete
to order . However, the Nedelec constraint is only a
reasonable choice for near-square patches and turns out to be too
restrictive for patches of more general shape. For such patches,
the parameters and must be selected independently de-
pending on the electrical size of the patch along the particular
direction. Nevertheless, a consistent charge expansion is only
obtained by maintaining the requirements and

. The charge expansion is then polynomial com-
plete to orders and along the - and -directions, respec-
tively. These requirements can be seen as a generalized Nedelec
constraint and our experience has shown that it works well in
praxis. Particularly, by introducing these requirements in (13)
and also including the -directed currents we obtain

(16)

which should be used in practical implementations. The above
expression contains all basis functions defined on a single patch
and allows only two parameters to be selected, and .
Note that the lowest order of approximation ( )
yields the well-known rooftop functions.

It is also instructive to examine the orthogonality of the
charge expansion which also appears in the MoM matrix ele-
ments. The charge associated with the -directed currents can
be obtained from the continuity equation as

(17)

and we note that for Legendre polynomials we have the identity

(18)

Substituting this into (17) yields

(19)
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The functions in the second line of this equation are all mutually
orthogonal and orthogonal to the functions in the first line of the
equation. Consequently, the current expansion in (14) implicitly
yields a higher order orthogonal expansion of the charge. Note
that this is only accomplished by using Legendre polynomials
and modifying the polynomials as in (11). The significance of
the orthogonal charge can be seen when the MoM matrix el-
ements associated with the mixed-potential electric field inte-
gral equation (EFIE) with Galerkin testing is evaluated. With

being the th testing function and the th expansion func-
tion, the matrix elements have the form

(20)

where is the electric field integral operator associated with
the vector potential and is the electric field integral oper-
ator associated with the scalar potential. The last inner product
appearing in (20) is essentially the inner product of the charge
associated with the testing function and the operator working on
the charge associated with the expansion function. In analogy
with the argumentation of Section II-A, this suggests that using
an orthogonal expansion of the charge will contribute to a favor-
able condition number of the MoM matrix.

For Legendre polynomials we have the relations

(21a)

(21b)

and for the modified polynomials these imply

(22a)

(22b)

This property of vanishing moments can be used to estimate the
far-zone field radiated by a higher order basis function. Using
a first-order Taylor expansion of the slowly varying far-zone
Green’s function shows that all functions with or
radiate zero far-zone field. In other words, the Legendre basis
functions are carefully shaped to concentrate the far-zone in-
teractions in the low-order functions, whereas the higher order
terms mostly act as local corrections. This is a fundamental as-
pect of the proposed basis functions and ensures the strong di-
agonal property of the MoM matrix.

D. Matrix Element Evaluation

Explicit expressions for the MoM matrix elements will not
be given here since they depend on the type of integral equation
being solved. It is worth noting however, that for the particular
case of of a mixed-potential electric field surface integral equa-
tion with Galerkin testing, we do not need to evaluate
in (14) since this term is canceled by the differential surface el-
ement . Specifically, the of the
testing function is canceled by the appearing in the inner
product in (20), whereas the of the basis function is
canceled by the of the integral operator.

Fig. 2. Illustration of the annihilation procedure. The quadrilateral patch
with a singularity at (u ; v ) is mapped into four smaller patches, each with a
singularity at the origin.

When implementing (14), the Legendre polynomials are effi-
ciently calculated by the recurrence formula

(23)
Equations (23) and (18) imply, that by computing the basis func-
tions of order , as a byproduct we have also computed the
basis functions of all lower orders, as well as their corresponding
charges.

Numerical evaluation of the self-term matrix elements is
often based on extraction of the singular part of the integrand.
However, in the case of higher order functions and curved
patches this approach is extremely tedious and leads to com-
plicated expressions for the singular part of the integrand. A
better choice is the purely numerical annihilation procedure
that is based on the Duffy transform [24] and was applied to
hexahedrals in [25]. This procedure can be adapted to surface
quadrilaterals as described below.

Consider the generic integral

(24)

where is a well-behaved arbitrary function and
is some other function with a first order singularity at

. The original integration domain is now mapped into
four new domains, each with a vertex at ( ), as illustrated
in Fig. 2. By using four different linear mappings, (24) can be
cast into the form

(25)

where is the Jacobian of the linear mapping. By applying the
transformation and we obtain

(26)

where after the transformation has a second order singularity
at . However, this singularity is canceled by
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Fig. 3. Coordinate lines on a seven-node second-order triangle represented as
a degenerate nine-node second-order quadrilateral.

the term . Thus, the four integrands in (26) are all well-be-
haved and can be integrated using a standard Gaussian quadra-
ture method. The annihilation procedure is an excellent tool for
writing very general codes since the functions and are ar-
bitrary. Thus, the same code can be used without modifications
for a variety of basis functions and Green’s functions. This is
not possible with methods based on analytical singularity ex-
traction.

E. Triangles in a Quadrilateral Mesh

The geometrical segmentation in terms of quadrilateral
patches of arbitrary order (Appendix I) can represent most
objects with sufficient accuracy. However, it simplifies meshing
of complicated structures if the numerical method allows a few
triangular patches in a quadrilateral mesh. Introducing special
basis functions on triangles would complicate the practical
implementation significantly. Instead, we propose here to
simply maintain the standard quadrilateral basis function and
treat triangles as degenerate quadrilaterals with two vertices
collapsed into one. Naturally, an edge with zero length should
not have a normal current component flowing across it, which
can be enforced by treating the edge as an external edge. The

and coordinate lines on such a degenerate quadrilateral
are shown in Fig. 3. It is observed that the three edges are
not treated symmetrically since one current component flows
between two edges whereas the other current component flows
from a vertex to an edge. Numerical experiments have verified
that this does not introduce numerical instabilities, and that the
accuracy is comparable to basis functions specifically defined
on triangles.

F. Generalization to Wires and Volumes

The basis functions defined in the previous subsections were
given for surface patches. However, it is straightforward to gen-
eralize them to wires and volumes. Specifically, the current on
a wire can be expanded as

(27)

For a curvilinear hexahedral volume with the parametric coor-
dinates ( ), the electric flux density can be written in
terms of its contravariant components as

(28)

where is the covariant unitary vector in the -di-
rection. A divergence-conforming expansion of the compo-
nent is then

(29)

where is the Jacobian

(30)

The components and can be expanded in a similar way
by interchanging ( ) in a cyclic fashion. The basis func-
tions for wires and volumes have the same favorable orthog-
onality properties as the surface functions in (14). Thus, they
are expected to provide similar improvements of the condition
number when compared to other higher order expansions, e.g.,
[8], [26].

All the basis functions presented above are divergence-con-
forming and allows to impose normal continuity of a vector
quantity across element boundaries. Similar curl-conforming
basis functions for imposing tangential continuity can be
obtained by using the contravariant unitary vectors [see Ap-
pendix II, (35)]. Such functions are suitable for the finite
element method (FEM) or in volumetric integral equation
solvers when the electric field is the unknown.

III. NUMERICAL RESULTS

The advantages of higher order basis functions have already
been mentioned in the literature [4]–[10]. Particularly, conver-
gence results were reported for spheres in [27] and for flat plates
in [28]. The presence of sharp edges has some impact on the ac-
curacy but even in this case, higher order basis functions pro-
vide better convergence than low-order basis functions. This
was shown in [29] that also presented an extension of the higher
order Legendre basis functions that incorporates edge singular-
ities. Typically, use of higher order basis functions allows the
number of unknowns to be reduced by a factor of 4–5. How-
ever, due to the increased condition number of the MoM ma-
trix an iterative solver may need more iterations for convergence
and this has compromised the effectiveness of the higher order
basis functions. Thus, we choose here to focus on the condi-
tion number of the MoM system when using higher order basis
functions. To this end we apply a standard MoM solution with
Galerkin testing to three simple perfectly conducting geomet-
rical objects; these are two parallel plates, two parallel circular
discs, and a pyramid. The condition number is higher when geo-
metrical singularities such as corners and edges are present. Fur-
thermore, the condition number is strongly affected by over-dis-
cretization. Thus, the geometrical objects are chosen to incor-
porate geometrical singularities with over-discretization to ob-
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Fig. 4. EFIE condition numbers for the 6� � 6� parallel plates. The
interpolatory basis of [8] is compared to the hierarchical basis of [5] and the
hierarchical Legendre basis developed in this paper.

TABLE I
SIZE OF SQUARE PATCHES AND THE NUMBER OF UNKNOWNS FOR THE

6� � 6� PARALLEL PLATES

tain a worst-case scenario. In each case, the condition number
for increasing polynomial order is obtained. Further, to isolate
the effect of increasing the polynomial order, we have tried to
keep the number of unknowns constant, or slightly decreasing,
by increasing the patch size along with the polynomial order.
We compare our hierarchical Legendre basis functions with two
existing types of higher order basis functions; the hierarchical
functions of [5] based on a power expansion, and the interpo-
latory ones of [8] based on Lagrange polynomials. The scaling
factors given in (12) and those suggested in [8] are essential for
realizing a low condition number and these factors are included
in the analysis (no scaling factors were suggested in [5]). The
choice are used throughout
this section which realizes a basis compatible with the Nedelec
constraint. Furthermore, this choice ensures that the basis func-
tions presented here and those of [5] and [8] all span the same
polynomial space and involve the same number of unknowns for
a given polynomial order. The surface current densities obtained
with the three types of basis functions are therefore identical for
a fixed polynomial order and only the condition numbers of the
MoM matrices differ. In the following we do not distinguish be-
tween the - and -directions and simply refer to the polynomial
order as . Results are presented for both the
EFIE and the combined field integral equation (CFIE).

First, we consider the two parallel plates with sep-
aration shown in the inset of Fig. 4. The three types of basis func-
tions are applied in the EFIE and the 2-norm condition number
is obtained for polynomial orders between and .
The patch size and number of unknowns are the same with the
three types of basis functions and listed in Table I. The condi-
tion numbers are graphed in Fig. 4 and the hierarchical Legendre
basis functions presented here provide for an almost constant
condition number as the polynomial order increases. However,
at the same time, the condition numbers of [5] and [8] grow

Fig. 5. Condition numbers for two parallel discs with diameter 10� and 1�

separation. The interpolatory basis of [8] is compared to the hierarchical basis
of [5] and the hierarchical Legendre basis developed in this paper.

TABLE II
AVERAGE PATCH SIZE AND NUMBER OF UNKNOWNS FOR THE PARALLEL DISCS

much faster. Particularly, the condition number obtained with
the hierarchical basis functions of [5] grows approximately one
order of magnitude for each polynomial order.

The discussion on orthogonality in Section II-B was limited
to rectangular or rhomboid shaped patches. To show that the
favorable condition numbers are maintained for more general
patch shapes, we apply the aforementioned three different basis
functions to two parallel discs with a diameter of and a
separation, as shown in the inset of Fig. 5. The patches are the
nine-node quadrilaterals with curved edges with average patch
size and number of unknowns for varying polynomial order
as listed in Table II. The condition numbers obtained with the
EFIE are shown in Fig. 5. Again, the hierarchical Legendre basis
functions of this paper provide for an almost constant condi-
tion number whereas the bases of [5] and [8] result in rapidly
growing condition numbers for increasing polynomial degree.
In fact, by increasing the polynomial order from 2 to 7 the con-
dition number obtained with the interpolatory basis displays an
increase by approximately 4 orders of magnitude whereas the
condition number obtained with our proposed basis does not
even increase by a factor of 10.

The EFIE, being a first-kind integral equation, always suffers
more from ill-conditioning than the CFIE. Thus, the CFIE is
preferable for closed structures such as the pyramid in Fig. 6. A
high condition number is expected for this object due to its sharp
edges and the irregularly shaped patches. The condition number
obtained with , 5, and 6 are listed in Table III for the basis
of this paper and for the interpolatory basis [8]. Clearly, for the
CFIE the growth in condition number with increasing polyno-
mial order is much lower than that of the EFIE. Nevertheless,
the observations given above for the EFIE still apply here.

The results given above show that hierarchical Legendre basis
functions of very high orders can be applied without compro-
mising the condition number of the MoM matrix. Thus, an ef-
ficient iterative equation solver can most likely be employed
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Fig. 6. Mesh of a pyramid with side length 10�.

TABLE III
AVERAGE PATCH SIZE, NUMBER OF UNKNOWNS, AND THE RESULTING

CONDITION CFIE NUMBER FOR THE PYRAMID

Fig. 7. Shaped offset reflector antenna (a), and (b), mesh of the reflector, feed
horn, and that part of the mounting structure contributing to the field for � > 0.
The mesh contains both four- and nine-node curvilinear quadrilaterals with sizes
ranging from 0:1� to 2:2�. The total surface area is 851� .

with the same success as for the low-order basis. To demon-
strate this for a more realistic problem we consider the con-
figuration shown in Fig. 7. This is a shaped offset reflector an-
tenna having a reflector diameter of . This antenna is a val-
idation standard used by the European Space Agency (ESA)
for calibrating measurement facilities. The model includes a
part of the antenna mounting structure and the feed horn. This
configuration involves both large smooth regions and small ge-
ometrical details with subwavelength extent. Low-order basis
functions, e.g., RWGs, would result in a large number of un-
knowns since they require small patches even in smooth regions.
The mesh of the shaped reflector and the mounting structure is

shown in Fig. 7. Both four- and nine-node curvilinear quadri-
laterals are used and the patch size is between and .
Using our hierarchical Legendre basis functions the polynomial
order is selected independently on each patch and is between

and resulting in 21 264 unknowns in total.
This corresponds to an average basis function density of 25 per
square wavelength. The iterative algorithm employs an efficient
near-neighbor preconditioner with overlapping domains which
are necessary due to the very large patches [30]. Despite the
application of tenth-order basis functions in the EFIE, the so-
lution converged to a relative residual error of in only 79
GMRES [31] iterations. The radiation pattern of the antenna is
strongly affected by the presence of the mounting structure in
the region which can be seen in Fig. 8. The agreement
with measured results is excellent when the mounting structure
is included in the simulation. The measured data were obtained
at the DTU-ESA Spherical Near-Field Antenna Test Facility at
the Technical University of Denmark (DTU). To put the number
of iterations into perspective, we can compare with an equiva-
lent solution obtained with RWG basis functions. Solving the
problem at hand requires more than 100 000 RWG functions.
Consequently, the required memory and CPU time needed to
perform a matrix-vector product are increased by approximately
a factor of 20 in comparison to the higher order hierarchical Le-
gendre basis functions. Thus, the RWG solution is not compet-
itive in terms of memory and must converge within an unlikely
4 iterations to be competitive in terms of CPU time.

IV. CONCLUSION

A new set of higher order hierarchical Legendre basis func-
tions was proposed for expanding electromagnetic fields or cur-
rents in differential or integral-equation based solution methods.
Expressions of the divergence-conforming functions for mo-
ment method implementations were given for wires, surfaces,
and volumes but the curl-conforming versions, e.g., for applica-
tion in the FEM, can easily be obtained. The new basis is con-
structed by modifying the Legendre polynomials in a way that
preserves almost perfect orthogonality while enforcing conti-
nuity of the normal current component across surface element
edges. As a result of this procedure, the surface charge is implic-
itly expanded in orthogonal functions. In addition, the higher
order functions can easily be computed for arbitrary orders and
have two vanishing moments which implies a relatively low
far-field contribution from these functions. Due to their hierar-
chical property, the proposed basis functions have all the advan-
tages of both low-order and higher order basis functions. Nu-
merical experiments have shown that the new basis functions
provide for a much better condition number of the MoM ma-
trix than available higher order hierarchical and higher order in-
terpolatory basis functions. This enables efficient iterative solu-
tion of higher order MoM systems which are also much smaller
than corresponding low-order systems. As a consequence, both
memory requirements and computation time will be very low.
The given numerical examples demonstrated the use of first- to
tenth-order hierarchical functions on second-order curved sur-
face patches where convergence were obtained in relatively few
iterations.
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Fig. 8. Co-polar radiation pattern in the xz-plane for the shaped reflector antenna compared to the simulation results obtained with hierarchical Legendre basis
functions. The simulations are done both with and without the mounting structure which has a significant effect on the radiation pattern for � > 0.

APPENDIX I
QUADRILATERAL PATCHES OF ARBITRARY ORDER

Consider a generalized quadrilateral patches with a curvi-
linear parametric ( ) coordinate systems defined by

. The generalized quadrilateral of order given by
interpolation nodes can be written as [32]

(31)

where are the interpolation nodes and is the th La-
grangian function of order

(32)

Here is the parametric coordinate of the interpolation node
and the last equality holds when equidistant are
chosen, i.e., . The representation in (31)
allows a subsection of the actual surface to be approximated by
a quadrilateral patch of arbitrary order. For practical reasons,
the most commonly used patches are bilinear quadrilaterals
given by four nodes, or second-order quadrilaterals given by
nine nodes. An alternative representation of (31) that facilitates
mixing of patches with different orders in the same mesh is

(33)

where are constant vectors given by a linear combination of
the interpolation nodes . The latter can be easily identified by
inserting (32) in (31).

APPENDIX II
COVARIANT AND CONTRAVARIANT UNITARY VECTORS

We define the covariant unitary vectors as

(34)

and the contravariant unitary vectors as

(35)

It is straightforward to show the relations

(36a)

(36b)

The covariant unitary vectors and are tangential to the
- and -directed edges, respectively. Thus, from (36b) we con-

clude that the contravariant vectors and are normal to the
- and -directed edges, respectively. The surface Jacobian is

given by and we have the relations

(37)

where is the unit normal vector. This also
implies that

(38)
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