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REFLECTOR ANTENNAS - AN OVERVIEW OF SURFACE DISTORTION EFFECTS
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ABSTRACT

Reflector antenna surface distortions may be slowly
varying, rapidly varying, systematic or random. Typical
exanples of each of these types of surface distortions
are presented and their consequences on the peak gain
and side lobe perfonmnance are illustrated. It is
demonstrateda that the impact on the radiation pattern
is strongly dependent on the type of surface
distortion.

1 INTRODUCTION

The use of higher frequencies and larger antennas makes
it very important to be able to establish realistic
requirements to the accuracy of the reflector antenna
surface. The purpose of the present paper is to illus-
trate how different surface deformations influence the
electrical characteristics of a reflector antenna.

2  CLASSIFICATION OF REFLECTOR
SURFACE DISTORTIONS

It is in general desirable that the reflector surface
is a paraboloid with focal point at the feed phase
centre. In practice, the surface may deviate from this
ideal shape for several reasons and it is convenient to
subdivide the surface deviations in the following ty-
pes,

a) deviations which change the desired paraboloid
into another best fit paraboloid

b) slowly varying errors
c) rapidly varying errors

since the impact on the radiation field is very differ-
ent fran one group to the other.

All three types of surface deviations will often appear
at the same time. This is illustrated in Figure 1,
where, as an example, the actual shape is shown as a
superposition of a best fit paraboloid, slowly varying
systematic errors and rapidly varying random errors.

The errors, which give rise to the best fit paraboloid,
could be due to thermal distortions, aging, residual
stresses and other slowly varying distortions. If no
other errors are present, this will give rise only to a
tilt of the beam, but the peak gain, the side lobes and
the cross polarization are - for realistic deformations
- practically unchanged.

/

e

RESUME

Les distorsions de surface des antennes a réflecteur
peuvent &tre: erreurs a variation lente, erreurs a
variation rapide, systématiques ou aléatoires. Chacune
de ces catégories est présentée i 1'aide d'un exemple
typique et les effets des erreurs sur le gain du
faisceau principal ainsi que sur la qualité des lobes
latéraux sont illustrés. Il est démontré que 1'effet
sur le diagramme de rayonnement est étroitement 1ié i
la catégorie de distorsion.

It is convenient also to distinguish between systematic
errors and random errors, Systematic errors are surface
deviations which are inherent in the construction of
the antenna and which are predictable, whereas random
errors are unpredictable but within some given statis-
tical limits.

Systematic errors may be slowly or rapidly varying
across the reflector surface. An example of slowly
varying systematic errors are thermal distortions.
Rapidly varying systematic surface deviations appear
for unfurlable reflectors, where the mesh is fixed at
given intervals.
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Random errors are typically caused by the fabrication
tolerances in the manufacturing process. The distinc-
tion between systematic and random errors may be fluid.
It may be convenient, for example, to consider thermal
distortions as a random slowly varying error in a para-
metric investigation in order to establish the accept-
able thermal distortion levels. However, once an anten-
na design has been fixed and the construction selected,
the thermal distortions are systematic errors that can
be predicted, and the influence on the RF-performance
can be accurately determined.

‘The influence on the RF-performance for the different
types of surface distortions is described in the fol-
lowing.

It is important to note that when the total rms surface
error is less than about 0.05\ (A = wavelength) all
effects are linear. This means that the total field may
be calculated by a direct summation, in amplitude and
phase, of the undistorted pattern and individual error
fields calculated separately.

3  SLOWLY VARYING DISTORTIONS

For a general investigation of slowly varying distor-
tions it is convenient to be able to generate such
surfaces in a systematic manner. This can be done by
superimposing a square grid on the undistorted reflec-
tor surface, as shown in Figure 2. The node values are
selected as random numbers uniformly distributed in a
given interval (the peak-to-peak value) and with a mean
value equal to zero. An interpolation function yields a
smooth surface between the random values at the nodes.
The spacing between the nodes, ¢, relative to the re-
flector diameter, D, determines the roughness of the
surface. This is illustrated in Figure 3 which shows
surface distortions for ¢/D = 0.4, 0.2, 0.1 and 0.05.
The correlation distance is 2c¢, meaning that within a
circular area of diameter 2c the surface distortions
are correlated, whereas they are completely uncorrela-
ted for larger distances.

It is seen from Figure 3 that typical thermal distor-
tions correspond to relatively large values of ¢/D, say
between 0.2 and 0.4. The surface shape for ¢/D = 0.05
is more typical for the uncertainties related to manu-
facturing tolerances.
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Figure 2 Grid for reflector distortion definition
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The slowly varying surface distortions will often turn
out to generate the most important RF degradations
because they affect the radiation pattern near the main
beam and the very first sidelobes. Therefore, the slow-
ly varying surface distortions have been investigated
in detail and an analysis approach has been developed.
The idea of this analysis method is to expand the sur-
face distortions in a series of Zernike polynomials.
For each of the modes in this expansion the influence
on the far field pattern is known. It is therefore
possible to evaluate the impact of a particular distor-
tion directly from the Zernike mode expansion.

c/D=0.4

c/D=0.2

c/D=0.05

surface distortions for different values of
c/D.

Figure 3



3.1 Zernike mode approach

The Zernike polynomials are used in optics for the
investigation of aberrations (see e.g. Born and Wolf,
1983). They have also been applied to model the aper-
ture phase of a single feed contoured beam reflector
antenna (Jergensen, 1983).

The Zernike polynamials are in general complex valued
functions. In the present context we are interested in
the real part only and each mode may then be written

ZR(x,y) = Ri(p) cos(m(e - o) (1)
where ¢} is a reference direction. The radial function

li"]'(p) is a polynomium in p containing the powers
p™,p™2, .. ,0". The zernike polynomials are orthogonal
over the unit circle.

The polynomials Rl\(p) are listed in Table 1 for m<8 and

<8 (from Ref. 4). The functions are normalized such
that RY(1) = 1.

The Zernike polynomials are characteristic by the fact
that they are not only polynomials for the radial de-
pendence Rp(p) but they are also polynamials in x and
Y.

The modes m=n=1and m= 0, n = 2 represent a plane
and a paraboloid, respectively. The modes for which m +
n = 4 are the primary aberrations in optical systems:

m =0, n=4: spherical aberration
m=1, n=3: coma
m=2, n=2: astigmatism

Three-dimensional plots of some of the Zernike polynom-
ials are shown in Figure 4.

The orthogonality of the Zernike modes is used to de-
termine the coefficients, o, in the expansion of a
distorted surface. A computer program for this purpose
has been developed and it has been used to expand the
distortions exemplified in Figure 3 for d/D = 0.2. The
result is shown in Figure 5 for modes up to m < n < 20.
The sizes of the shaded areas represent the relative
amplitude of a particular mode.

It is seen from Figure 5 that only the modes up to
about m = n = 14 are necessary for representing this
distortion example. The mode m = n = 1 will generate a
beam tilt and can be removed by a lateral displacement
of the feed. Similarly, the (m,n) = (0,2) can be re-
moved by an axial displacement of the feed. The coeffi-
cients to these modes can therefore be used to deter-
mine the optimum feed position for the actual reflector
shape (the best fit paraboloid).

The error signal generated by one Zernike mode may for
uniform aperture illumination be written as
J (kasimd)

Eg = 6Mj(™1) e — cos(m(e - oM) (2)

apart from constant factors. 8™ is the amplitude of the »
n

distortion mode, k = 2r/A and a = D/2. This expression
for the distortion field exhil('aitf several interesting
characteristics. The factor j m+T) implies that the
distortion field for all odd m will be in phase with
the undistorted pattern and therefore the influence on
the sidelobe levels will be much more pronounced than
for even values of m. The azimuthal variation, cosmp,
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is, as expected, identical to that of the surface error
itself. The amplitude of the distortion field is con-
trolled by the factor It (kasirp ) /kasind and it is
independent of m. Figure g shows the angular variation
of the distortion field for n = 4, 8, 12, 16 and 20
where the amplitude of the distortion is 6',"' = 0.01\.
For camparison also the undistorted pattern is shown in
Figure 6.

It is seen, that the maximum influence of the distor-
tion moves away from the main beam as the mode number
is increased and for values of the argument lower than
the maximum, the function decays very rapidly and its
influence on the pattern will be practically negli-
gible.

The present analysis is aimed at slowly varying surface
errors which concentrate at the main beam and the first
few sidelobes. Figure 6 shows that if effects outside
the third sidelobe are ignored, only modes up to about
12 in m and n need be considered.

In the case of a tapered illumination of the aperture
the distortion field cannot be expressed by a simple
formula. The distortion field can, however, very well
be evaluated numerically by a one-dimensional integral
in the radial direction and the general characteristics
remain unchanged.

The above expression (2) includes only first order
effects of the distortions. The consequence of this is
that all distortion effects vanish in the boresight
direction, 6 = 0. For uniform illumination it is possi-
ble to include also the second order effect which will
give the correct variation near @ = 0 including_the
well-known axial gain decrease, exp( (—hcms/k)z), €

being the mms value of the surface distortions. This
limitation for tapered illuminations does not jeopar-
dize the practicability of the method since the second
order effects are only significant near the main beam
peak and the axial gain drop is known anyway from the
€ yms value of the surface distortions.

The total field from the antenna is determined by com—
bining the field from the undistorted antenna with the
modal error fields described above. The total field is
calculated by a direct summation, in amplitude and
phase, of the undistorted pattern and all the modal
error fields weighted by the individual amplitudes. The
nunber of modes necessary in the expansion depends on
the angular region of interest.

The radiation pattern for an antenna with diameter

D = 41.5\ and with the surface distortion in Figure 3
for ¢/b = 0.2 is shown in Figure 7. It is seen that the
slow variation of the surface distortion limits the RF
degradations to the main beam and the first couple of
side lobes. It should be noted that the nominal pattern
is rotationally symmetric but the distortion field is
not. This is illustrated in Figure 8 which shows a
contour plot of the distortion field. The lack of sym-
metry means that the influence of the distortions may
be very different in different pattern cuts and there
may be pattern cuts where the distortion effects are
practically invisible (along the dotted line in Figure
8)
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Table 1 The radial polynomials R:(p) form< 8 andn<«< 8
(from Born and Wolf (1983))

m=0, n=8 .m=1, n=9

m= 2, n= 10 s . m.= 6, n = 14

Figure 4 Samples of Zernike modes for surface representation
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3.2 Applicational example

The Zernike mode approach will be illustrated by a
realistic example, namely an inflatable antenna deve-
loped by Contraves, Switzerland, as separately descri-
bed by Hanmer, Pagana and Bermascoui (1986) in another
paper at this conference.

A photograph of the inflated antenna is shown in Figure
Y. The focal length of the parent offset paraboloid is
2.33 m and aperture diameter is 2.81 m. The reflector
surface shape has been measured mechanically by Contra-
ves and x-, y- and z-coordinates to about 600 surface
points have been made available to TICRA.

Figure 9 The Contraves inflatable antenna

For the RF calculations to be presented in the follow-
ing it has been assumed that the feed radiates a balan-
ced pattern with phase center at the focus of the pa-
rent paraboloid and providing a 20 dB edge taper. The
feed is linearly polarized in the plane of symmetry.
The frequency is 3.63 GHz.

For all analyses of reflector surfaces it is very de-
sirable that the reflector surface data points are
available in a regular xy-grid. This is often not the
case if the surface data are the results of a direct
measurement or the output of a mechanical finite ele-
ment calculation.

The method adopted here to obtain the regular grid has
been described by Akima (1978). The input points -
which may be completely arbitrarily distributed - are
automatically connected to form the "best" possible
triangular grid. Interpolation functions within each
triangle will yield a continuous and smooth surface and
are used to calculate the surface points in the regular
grid.

The measured input points and the triangular grid for
the Contraves antenna is shown in Figure 10. Once the
data points have been transformed to a regular grid
they can be used for further analyses and they can be
represented visually as shown by the 3D-plot in Figure
11. Two types of surface errors are clearly identified.
Slowly varying distortions - which perhaps are due to
unequal tensions in the membrane material - are super-
imposed by minor rapidly varying errors along the in-
tersections between the gore sections.

The Zernike mode expansion for the surface distortions
in Figure 11 are shown in Figure 12. It is seen that
the rapid variations on the reflector surface give rise
to many Zernike modes of high order and small ampli-
tude. However, only the dominant lower order modes will
affect the radiation pattern near the main beam and the
first sidelobes. Figure 13 shows the surface distor-
tions generated by the Zernike mode expansion including
only the modes up tom< n< 12,

VOLLMESSUNG NIT 24PA/4.S BAR Ar 3.6.85 . CONTRAVES.1

i L

». - -

Contraves inflatable antenna
Measured points and triangularization

Figure 10
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Figure 12

For the Contraves inflatable antenna the rms surface
error is about 1.3 mm which corresponds to 0.016A. The
validity of superposition is therefore satisfied.

The Zernike mode approach for evaluating surface dis-
tortions will now be compared to a rigourous Physical
Optics analysis (GRASP).

The E-plane radiation pattern for the undistorted an-
tenna (ideal paraboloid) is shown in Figure 14 in a
region *8 degrees from boresight.

The pattern calculated by GRASP for the actually reali-
zed surface is shown in Figure 15. The surface is here
represented by the measured data transformed into a
regular grid as shown in Figure 11. It is seen that the
distortions have a significant impact on the patterns,
especially the sidelobes which are increased by up to
10 dB.

Figure 15 also shows the pattern obtained by the Zer-
nike mode approach, i.e. adding the individual distor-
tion patterns to the undistorted pattern in Figure 14.
It is seen that the accuracy is very good and certainly
adequate for the proposed application. In Figure 15
only the modes up to m< n < 12 are included. Higher
order modes would only radiate for 6 > 8.5 degrees,
i.e. outside the pattern range in Figure 15.

Figure 13 Contraves inflatable antenna
Surface deviations from parent paraboloid
represented by Zernike modes up to
m< n< 12
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Figure 14 E-plane radiation pattern for the ideal

' Contraves antenna.
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Figure 15 E-plane radial pattern for the Contraves
antenna with the realized surface.
GRASP solution with measured reflector
surface (Figure 11).
Zernike solution with modes up to m< n <
12,

The main advantage of the proposed analysis method is -
apart from computer time - that there is a close rela-
tion between a given type of surface deformation and
the impact on the radiation pattern. This makes it
possible by simple means to determine how the reflector
construction should be changed in order to improve the
performance. .
Rapid surface distortions, which generate modes of high
order, will contribute only in the far-out side lobe
region. If the region of interest is limited to the
main beam and the first few side lobes, only the lower
order modes need be determined. Consequently, only a
limited number of input points are necessary. For the
Contraves antenna described above the distortion ef-
fects would have been adequately predicted with about
100 uniformly distributed points.

4 RAPIDLY VARYING DISTORTIONS

In this section the effects of rapidly varying surface
distortions will be described. They will be divided in
systematic errors resulting from the construction of
the antenna and random errors caused by the manufac-
turing tolerances.

4.1 Systematic distortions

The systematic surface distortion will be illustrated
by two types of unfurlable reflector antennas, the
umbrella concept and the 3D-scissors concept. In the
umbrella design the reflecting mesh is attached conti-
nuously along the supporting parabolic ribs, whereas in
the 3D-scissors design the mesh is fixed to the nodes
of a regular triangular lattice, see Figure 16. The
actual shape of the reflecting mesh will derivate from
the desired paraboloidal form, as illustrated in Figure
17.

The gore sectors of the umbrella antenna will give rise
to increased side lobes, the so-called gore lobes. The
gore lobes do not affect the pattern near the main beam
and the first side lobes, but they appear from an angle
given approximately by

. Ny
sin eg=u—b7>‘— (3)
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Construction principles of unfurlable
antennas.

a) umbrella concept

b) 3D-scissors concept

Figure 16
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Figure 17 Surface deviations relative to parent
paraboloid for
a) umbrella concept
b) 3D-scissors concept

where N, is the number of ribs (or gores). The gore
lobes age approximately rotationally symmetric around
the main beam axis. The radiation pattern of an umbrel-
la antenna with 20 ribs is shown in Figure 18b and the
pattern for the undistorted paraboloid is shown in
Figure 18a.

The two-dimensional periodic structure of the 3D-
scissor surface gives rise to grating lobes. The angu-
lar position 6 __ of the grating lobes closest to the
main beanm is given by

2
9r /3 s

sin 6 (4)

where s is the distance between the node points in the
scissor construction.

The systematic nature of the surface distortions con-
centrates the energy in the grating lobes and, as for
the umbrella antenna, the main beam and the inner side
lobes are practically unaffected. Figure 18c shows the
pattern where the grating lobes are clearly visible.

4.2 Random distortions

The random errors of a reflector antenna surface are
typically associated with the manufacturing tolerances
and with the finite accuracy of adjustment and measure-
ment (e.q. unfurlable antennas) of the realized sur-
face.

Random errors on the reflector surface will scatter the
field from the forward direction into the sidelobe
region thus reducing the peak gain and increasing the
sidelobes. Random errors have been investigated by Ruze
(1966). His classical results have proven to be very
useful and are sumarized below.

i

Figure 18

f it l
.‘ "Nl' !u»’\ I\

1 ":.‘\ ! H "H

HI

Radiation patterns for unfurlable antennas
a) nominal pattern

b) umbrella concept

c) 3D-scissors concept



The peak gain is reduced by the factor

4
e_(_n;IIIIS)2

.(5)

where € is the root mean square surface error. This
expression is with good approximation valid not only
for random errors, but for any type of error measured
relative to the best fit paraboloid.

.The power pattern of the distortion field generated by
the surface errors is - for small errors - given by

4n 2(cpny2
Gg = (92 (T5ms)2 o~(xsind ) (ch)? (g

where 2c is the correlation distance of the surface
errors and 6 is the angular distance from boresight.
The relation (6) is illustrated graphically in Figure
19 for e .. = 0.01. Note that the distortion pattern
is indepegaent of the size of the reflector, D/A. The
expression (6) is not valid near the axis ,6 = 0, where
instead expression (5) should be used.

kandom surface distortions can be generated numerically
by the approach illustrated in connection with Figure 2
where the distance c between the grid lines will result
in a correlation distance of 2c.

In order to illustrate the range of applicability of
Ruze's simple formulas the four surface distortion
examples of Figure 3 will be investigated. Figure 20
shows for each value of c/D

- the grid used for generating the surface dis-
tortion

- the surface distortion shape (repeated from
Figure 3)

- the Zernike mode expansion of the surface dis-
tortion, €rms = 0.0

= a pattern cut, D = 41.5\, uniform illumination

30 1 i 1 1 'l
dBi
0
-30 ; . ;
-15 -10 -5 0 5 8 10 15
Figure 19 Distortion field for random surface error

with ms value 0.01A

7a

The pattern cuts include the
- nominal field

- distorted field

distortion field
= Ruze approximation (6) for the distortion field

The distortion field is the vectorial difference
between the nominal field and the distorted field.

Although the values of ¢/D = 0.2 and 0.4 are more typi-
cal for slowly varying distortions they are included
here to illustrate the dependence with surface rough-
ness. Figure 20 shows that for these cases the surface
shape is represented by a relatively small number of
Zernike modes and the field can be calculated at any
point by the approach described in Section 3.1.

For ¢/D = 0.1 and 0.05 the surface shape is so rapidly
varying that the number of modes necessary for a Zer-
nike mode expansion becomes too large for practical
applications. Figure 20 shows that the distortion pat-
tern becomes very broad such that the whole side-lobe
region is affected. It is worthwhile to note that
Ruze's formula, expression (6), gives a very good over-
all approximation to the distortion field (except near
the axis). Expression (6) cannot be used to calculate
the distorted pattern at a particular point since the
phase is unknown. This is not a practical limitation
since the requirement to manufacturing tolerances will
be based on all side lobes remaining within acceptable
limits.

For ¢/D = 0.05 the number of points used to define the
random surface is about 300. This number is similar to
the number of mesh fixation points of a realistic un—
furlable antenna. The result in Figure 20 for ¢/ =
0.05 is therefore representative for the mesh ad-
justment errors of an unfurlable antenna.

5 CONCLUSIONS

It has been demonstrated that different types of sur-
face aistortions have very different impacts on the
radiation performance. For a particular design it is
therefore necessary to determine the types of reflector
deformations that can appear, before the realistic
requirements to the accuracy are established.

Slowly varying surface distortions, typically generated
by thermal distortions, are efficiently dealt with by
means of the Zernike mode approach. Each mode in the
expansion of the surface distortion will give rise to a
particular electrical distortion field. This relation-
ship makes it possible to evaluate how a mechanical
construction should be modified in order to reduce the
RF degradations. It is especially important to point
out that the effect of slowly varying surface errors is
concentrated in the region of the first side lobes and
therefore, these errors play a decisive role when deal-
ing with antennas with stringent requirements to the
side lobe performance.
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Rapidly varying random errors due to manufacturing
tolerances and limited adjustment accuracy are well
described by statistical methods. In contrast, rapidly
varying systematic surface errors, typical for
unfurlable antennas or reflectors constructed by
panels, give distinct effects (grating lobes) on the
radiation pattern which will have to be calculated on a
case by case basis.
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