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Abstract-- A new method to analyze reflectarrays 
with rectangular patches is proposed. While the 
standard procedure has been to calculate the electric 
currents on the patches using e.g. a periodic Green's 
function or a Method of Moments approach, the 
present method calculates the magnetic currents in 
the gaps between the patches and subsequently 
determines the radiated field using Love's 
equivalence theorem. Since the complete analysis can 
be expressed on closed, analytical form, the method 
is extremely fast and makes no implicit assumptions 
about periodicity.  
 
Index Terms- Reflectarray 

 
1. INTRODUCTION 
 
This paper presents an alternative method to analyze 
reflectarrays with rectangular patches. The objective 
is to determine the electric fields in the gaps between 
the patches. These fields can be converted into 
magnetic currents, and the radiated field can then be 
calculated using Love’s equivalence theorem, i.e. the 
magnetic currents are placed on a perfectly 
electrically conducting (PEC) surface. First the PEC 
surface is removed and the magnetic currents are 
doubled to account for the mirror images, and the far 
field is calculated using the free space Green’s 
function. Subsequently the reflection from the PEC 
surface is added to obtain the total field. 
To calculate the electric field in the gaps, the incident 
field is first separated into two components, one that 
only excites a field in the x directed gaps, and one 
that only excites a field in the y directed gaps. The 
paper is organized as follows: first a reflectarray with 
identical square patches is analyzed for an incident 
plane wave to establish the phase curve for the 
reflected wave. 
As a byproduct the electric field in the gaps are also 
calculated. This is done for boresight incidence, for 
E-plane scan and finally for arbitrary incidence.  
Finally an actual reflectarray is analyzed, assuming 
that the incident field from the feed is locally a plane 
wave over each patch. All magnetic currents are 
calculated and the radiated field is calculated. 
 

 

2. BORESIGHT ANALYSIS 
 
Fig.1 shows a reflectarray lying in the x-y plane with 
a plane wave incident from the z axis. The field is 
polarized along x, hence, since the gaps are narrow 
compared to the wavelength, the field will not be able 
to penetrate the x directed gaps. We can therefore 
replace the array of patches with an array of y 
directed strips, as shown in Fig. 1. 
 

 
Figure 1.        Strip array model of reflectarray. 
 
 
Clearly the electric field can penetrate the y directed 
gaps, and due to symmetries, the field that penetrate 
two neighboring gaps will launch waves traveling in 
opposite directions, vertically polarized, with 
opposite polarization. These two waves will have 
identical phase when they meet at the centre of the 
strip, and will therefore exactly cancel at this point. 
This means that under each strip, the vertical 
electrical field will be exactly zero at the centre, and 
we can therefore insert a perfectly conducting wall at 
these points without changing the electromagnetic 
field. This is shown in Fig. 2. 
 

 
Figure 2.     Strip array with short circuits inserted. 
 
The effect of these walls is to decouple the field 
propagating under the strips. We can now consider 
the field penetrating one gap separately. This field 
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will propagate into two shunts, one to the left and one 
to the right. Since the thickness of the dielectric is 
very small in wavelengths, it is immaterial whether 
the field in the shunts propagate horizontally or 
vertically. We can therefore replace the two 
horizontal shunts with two vertical shunts, and since 
they are equally long, we can merge them into one 
shunt of width 2H, where H is the thickness of the 
dielectric. This is shown in Fig. 3.  
 

 
 
Figure 3.     Corrugated surface model. 
 
Effectively we have now replaced an array of strips 
with a corrugated surface. We assume that the field in 
the corrugation, z<0, is a standing wave  (excluding 
any losses in the dielectric) and match this wave to 
the incident and reflected plane waves for z>0 across 
the boundary at z=0.  Suppose the complex 
amplitudes of the incident and reflected waves are 
one and β. We then find 
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where k and kr are the propagation constants in free 
space and in the dielectric. 
To modify the procedure for an incident wave 
scanned in the H plane is trivial, essentially requiring 
only that the propagation vector is decomposed into a 
vertical component and a component along the y axis.  
 
3. E-PLANE SCAN 
 
Scanning the incident wave in the E-plane requires a 
little more consideration. We can still replace the 
patch array with a strip array, but the perfect 
symmetry is no longer present. We shall therefore 
introduce the Ansatz that the waves excited below the 
strips are still symmetrical in amplitude, but 
obviously have different phases, depending on the 
scan angle. It is, however, a trivial geometric exercise 
to determine the position where the two waves will 
arrive with identical phases, and therefore cancel 

each other. As shown in Fig. 4 the conducting walls 
will therefore be offset from the centre. 
 

 
Figure 4        Strip array model of reflectarray.  
 
 
When the model is modified into a corrugated 
surface, we can no longer merge the two shunts, since 
they are of different length. As shown in Fig. 5, we 
must therefore model the corrugations as bifurcated 
waveguides.  
Solving the scattering problem is only slightly more 
complicated, compared to the boresight case. 

 

 
 
Figure 5.     Corrugated surface model. 
 
We still assume a standing wave in the corrugation, 
but only for  -H/2<z<0. At z=-H/2 we impose a 
condition derived from considering the two parallel 
shunts as a bifurcated waveguide, and proceed to 
match the fields at z=0. We now find  
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where Ψ describes the phase of the reflection 
coefficient of the bifurcated waveguide at z=-H/2.  
 
4. ARBITRARY INCIDENCE 
 
We now consider a plane wave incident from the 
direction (θ, φ) in the coordinate system (xG , yG,  zG), 
where the patches are aligned along (xG, yG). The  

propagation vector of the incident field is 
i

k̂ , so we 



now define the two vector systems (
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and expand the incident E  field after 1ˆ v

ix  and 

2ˆ v
ix .  This is illustrated in Fig. 6.  

 

 
 
Figure 6.     Skew angled coordinates for arbitrary 
incidence. 
 
With the usual approximations, the field along 

1ˆ v
ix will only excite a field in the  yG directed slots 

and the field along 2ˆ v
ix will only excite a field in the  

xG directed slots. We can therefore separate the 
problem into two orthogonal strip arrays as before. It 
only remains to determine the position of the 
conducting walls below the strips. 
This is considered in Fig. 7 for the 2ˆ v

ix  polarized 
field. 
Let two rays in the incident wave hit the l.h.s. of the 
strip in P1 and the r.h.s. in P2. Two waves will be 
excited below the strip at an angle of ωr determined 
by Snell’s law. They meet in P3 and if their phases do 
not agree, we adjust ∆ accordingly. This determines 
the values of d1 and d2 and hence the position of the 
conducting wall. 
 

 
 
Figure 7.     Determination of position of conducting 
walls. 
 
The value of β can be expressed as in (2) with kr 
replaced by kr sin ωr and Ψ replaced by a value that 
depends on kr , sin ωr , d1 , and d2. 
The same procedure is repeated for the other 
polarization. 
 
5. CALCULATION OF RADIATION 
 
We are now able to calculate the magnetic currents in 
all the gaps. Since each gap is short compared to the 
wavelength, we can assume that the currents have a 
constant amplitude and a progressing phase. As 
explained in the introduction, the current amplitude is 
doubled to account for the image and the radiated 
field is integrated in closed form using the free space 
Green’s function. The far field from each gap can be 
written 
 

nnn hH )1(,1 β+=                                           (5) 
 
where βn is the complex amplitude of the reflected 
wave from gap No. n, assuming that the field from 
the feed can be considered locally plane. Summing 

nH ,1  over n leads to part of the reflected field to 
which must be added the reflection from the PEC 
surface supporting the currents. Suppose now that all 
βn  were zero, then all reflected fields, and hence the 
total field, would be zero. To achieve this we must 
add nn hH = −,2  to (5). The total field is thus 
obtained by replacing (1+ βn) in (5) with βn. 
As an example consider the reflectarray in Fig.8. 
It has 45 x 45 patches and is designed to radiate a 
maximum for (u,v)=(0.49,0.). The array is 45 x 45 
cm, the frequency 10 GHz, and the feed is  
 



 

 

 

 
Figure 8.  Reflectarray example.. 
 
a Gaussian feed, placed at (θ, φ)=(30,-180) deg., 60 
cm from the centre of the array. 
The u-v pattern for this example has been calculated 
by the described method, and the result is shown in 
Fig. 9. 

Figure 11  U-v pattern for optimized reflectarray 
example. 
 

 6. CONCLUSION 
 

 

An intuitively simple method to analyze a certain 
class of reflectarrays has been presented. The method 
only relies on trivial mathematics and the result is 
obtained in closed form, making the method 
extremely fast, e.g. the above example was analyzed 
in 5.5 ms on a standard laptop. The complete 
expressions do not fit into the present format, but all 
details may be found in [1], which can be obtained 
from TICRA on request. 
The method does not pretend to be as accurate as 
more sophisticated procedures, but is primarily 
intended for space mapping optimization. Also it 
provides a simple method to estimate general 
properties of an array. E.g. (1) makes it easy to 
estimate the effect of dielectric losses by simply 
adding an imaginary part to kr  and the procedure also 
explains why the optimum position for a circularly 
polarized feed is along a diagonal of the array. 

 
Figure 9  U-v pattern for reflectarray example. 
 
If the maximum gain is optimized, using a non-
linear least-squares optimizer, the patch pattern 
is changed only moderately as shown in Fig. 10. 
It is, however, possible to obtain an extra 1.0 dB 
gain and to suppress the sidelobes considerably. 
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Figure 10.  Optimized reflectarray example.. 
 


